matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe Analysisexp wesentliche Singularität
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Komplexe Analysis" - exp wesentliche Singularität
exp wesentliche Singularität < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

exp wesentliche Singularität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:52 Fr 05.10.2018
Autor: Maxi1995

Hallo,
angenommen ich betrachte [mm] $\exp(-\frac{1}{z^2})$, [/mm] dann weiß ich, dass die Funktion im komplexen Nullpunkt eine wesentliche Singularität hat.
Sie ist dort in eine Laurentreihe entwickelbar, die auf ganz [mm] $\mathbb{C}$ [/mm] normal konvergent ist.
Jetzt ist es doch so, dass die Laurentreihen auch unendlich oft komplex differenzierbar sind, was dann erklären würde, warum die Funktion im Reellen unendlich of differenzierbar ist, oder?

        
Bezug
exp wesentliche Singularität: Antwort
Status: (Antwort) fertig Status 
Datum: 08:18 Fr 05.10.2018
Autor: fred97


> Hallo,
>  angenommen ich betrachte [mm]\exp(-\frac{1}{z^2})[/mm], dann weiß
> ich, dass die Funktion im komplexen Nullpunkt eine
> wesentliche Singularität hat.
> Sie ist dort in eine Laurentreihe entwickelbar, die auf
> ganz [mm]\mathbb{C}[/mm] normal konvergent ist.

Nicht auf ganz [mm] \IC, [/mm] sondern auf $ [mm] \IC \setminus \{0\} [/mm] $ ist die Laurentreihe lokal gleichmäßig konvergent.

> Jetzt ist es doch so, dass die Laurentreihen auch unendlich
> oft komplex differenzierbar sind, was dann erklären
> würde, warum die Funktion im Reellen unendlich of
> differenzierbar ist, oder?

Die Funktion $f(x)=  [mm] \exp(-\frac{1}{x^2}) [/mm] $ ist auf  $ [mm] \IR \setminus \{0\} [/mm] $ beliebig oft (reell) differenzierbar. Das sieht man mit der Kettenregel und vollständiger Induktion recht einfach.

Du kannst auch folgende Funktion betrachten:

[mm] $g(x)=\begin{cases} \exp(-\frac{1}{x^2}) , & \mbox{für }x \ne 0 \\ 0, & \mbox{für }x=0 \end{cases}$. [/mm]

In jedem Analysis- Buch findest Du: $g [mm] \in C^{\infty}(\IR)$ [/mm] und [mm] $g^{(n)}(0)=0$ [/mm] für alle $n [mm] \in \IN_0$. [/mm]




Bezug
                
Bezug
exp wesentliche Singularität: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:24 Sa 06.10.2018
Autor: Maxi1995

Hallo,
danke für deine Antwort. Würde meine Argumentation über die Laurentreihe auch gehen? Bzw. wenn nicht, wieso nicht. Und vielen Dank für die Alternative.

Bezug
                        
Bezug
exp wesentliche Singularität: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Do 11.10.2018
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]