matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Matrizenexp(B)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Matrizen" - exp(B)
exp(B) < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

exp(B): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:04 Mo 21.07.2008
Autor: match

Aufgabe
Zeigen sie: Eine Matrix A [mm] \in Gl(2,\IR) [/mm] ist genau dann im Bild der Exponentialfunktion exp: [mm] M(2,\IR) \to Gl(2,\IR), [/mm] wenn A keine negativen Eigenwerte hat oder aber von der Form [mm] aE_2 [/mm] , a<0, ist.

Also zu dieser Aufgabe fehlt mir jeglicher Ansatz.

Ich soll ja quasi zeigen, dass

exp(B)= A nur dann wenn A keine negativen Eigenwerte oder A von der Form [mm] aE_2 [/mm] mit a<0. Aber dann gehts bei mir irgendwie nicht mehr weiter.

Also es wäre sehr nett wenn mir jemand helfen könnte, freue mich über jede Antwort.

Liebe Grüße

        
Bezug
exp(B): Antwort
Status: (Antwort) fertig Status 
Datum: 19:22 Mo 21.07.2008
Autor: Merle23

Erstens: Es ist eine "genau dann, wenn" Aussage, d.h. du hast [mm] "\Rightarrow" [/mm] und [mm] "\Leftarrow" [/mm] zu zeigen.

Zweitens: Weisst du wie man mit Hilfe der JNF exp(A) berechnet? Wenn nein, dann schlag das nochmal nach, z.B. bei []Wiki.

Drittens: Da wir hier nur den Fall n=2 haben, kannst du versuchen eine allg. Matrix [mm] \pmat{ a & b \\ c & d } [/mm] zu nehmen und von der das Exponential berechnen. Dann könntest du versuchen die geforderten Eigenschaften zu zeigen.

Viertens: Im komplexen Fall ist die Exponentialabbildung surjektiv (sagt zumindest Wiki), also könntest du versuchen das zu zeigen und dann auf den reellen Fall irgendwie zu übertragen.

Fünftens: Für die Rückrichtung könntest du direkt versuchen eine entsprechende Matrix B anzugeben, so dass dann exp(B)=A gilt. Auch hier ein []Wiki-Link.

Hoffe, dass du damit weiterkommst.

Bezug
                
Bezug
exp(B): Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:06 Di 22.07.2008
Autor: match

Hallo ich bins nochmal:
Also wir haben jetzt als Hinweis bekommen:
Ist das charakteristische Polynom von B= [mm] (T-\lambda)(T-\overline{\lambda} [/mm] für lambda=a+ib [mm] \not\in \IR, [/mm] so gibt es ein S [mm] \in Gl(2,\IR) [/mm] mit [mm] SBS^{-1}=\pmat{ a & b \\ -b & a }. [/mm] Dies darf man ohne Beweis benutzen.

Das ist bestimmt dazu da um mir bei dem Berechnen von exp(B) zu helfen, tut es aber leider nicht. Denn B und oben genannte Matrix sind ja zueinander konjugiert aber eigentlich bräuchte ich doch die Jordannormalform um exp(B) auszurechenen.

Wenn mir jemand helfen könnte wäre echt nett.

Viele Grüße


Bezug
                        
Bezug
exp(B): Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:24 Do 24.07.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]