matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Abbildungeneuklid. Normalform Transf.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Abbildungen" - euklid. Normalform Transf.
euklid. Normalform Transf. < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

euklid. Normalform Transf.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:18 Do 18.09.2014
Autor: RunOrVeith

Aufgabe
Gegeben sei [mm] A=\bruch{1}{4}\pmat{ 3 & \wurzel{6} & 1 \\ -\wurzel{6} & 2 & \wurzel{6} \\ 1 & -\wurzel{6} & 3} \in \IR^{3x3} [/mm]
a) Zeigen sie, dass die Matrix orthogonal ist.
b) Bestimmen sie die euklid. Normalform  von A.
c) Bestimmen sie eine orthogonale Matrix S [mm] \in [/mm] O(3), so dass S^TAS=Â gilt.

Hallo,
ich komme hier bei der Aufgabe c) nicht weiter.
Bei der a) gilt [mm] A*A^T=I_3, [/mm] also ist A orthogonal
bei der b) habe ich den Trick mit [mm] B:=A+A^T [/mm] (char. Poly [mm] =(x-2)*(x-1)^2) [/mm] angewandt und komme auf [mm] Â=\pmat{ 1 & 0 & 0 \\ 0 & 0.5 & - \wurzel{3}*0.5 \\ 0 & \wurzel{3}*0.5 & 0.5}. [/mm]
Bei der c) brauche ich ja eine Orthonormalbasis.
Also nehme ich einen Eigenvektor von [mm] (B-2I_3) [/mm] suche.
z.B [mm] \vektor{1 \\ 0 \\ 1} [/mm] := [mm] w_1 [/mm]
Jetzt muss ich das Gram-Schmidt Verfahren darauf anwenden um am Ende noch alle gefunden Vektoren normalisieren.
Ich dachte eigentlich ich verstehe wie das geht, aber irgendwie doch nicht.
Ich nehme doch dann einen linear unabhängigen Vektor zu [mm] w_1, [/mm] z.b. [mm] \vektor{0 \\ 1 \\ 0}=:w_2 [/mm]
und mache [mm] w_2-\bruch{}{}*w_1 [/mm]
und dann nochmal mit einem weiteren linear unabhängigen Vektor. Nur leider komme ich nicht auf das richtige Ergebnis, was muss ich anders machen?

Vielen Dank!

        
Bezug
euklid. Normalform Transf.: Antwort
Status: (Antwort) fertig Status 
Datum: 14:16 So 21.09.2014
Autor: MathePower

Hallo RunOrVeith,

> Gegeben sei [mm]A=\bruch{1}{4}\pmat{ 3 & \wurzel{6} & 1 \\ -\wurzel{6} & 2 & \wurzel{6} \\ 1 & -\wurzel{6} & 3} \in \IR^{3x3}[/mm]
>  
> a) Zeigen sie, dass die Matrix orthogonal ist.
>  b) Bestimmen sie die euklid. Normalform  von A.
>  c) Bestimmen sie eine orthogonale Matrix S [mm]\in[/mm] O(3), so
> dass S^TAS=Â gilt.
>  Hallo,
>  ich komme hier bei der Aufgabe c) nicht weiter.
>  Bei der a) gilt [mm]A*A^T=I_3,[/mm] also ist A orthogonal
>  bei der b) habe ich den Trick mit [mm]B:=A+A^T[/mm] (char. Poly
> [mm]=(x-2)*(x-1)^2)[/mm] angewandt und komme auf [mm]Â=\pmat{ 1 & 0 & 0 \\ 0 & 0.5 & - \wurzel{3}*0.5 \\ 0 & \wurzel{3}*0.5 & 0.5}.[/mm]
>  
> Bei der c) brauche ich ja eine Orthonormalbasis.
>  Also nehme ich einen Eigenvektor von [mm](B-2I_3)[/mm] suche.
>  z.B [mm]\vektor{1 \\ 0 \\ 1}[/mm] := [mm]w_1[/mm]
>  Jetzt muss ich das Gram-Schmidt Verfahren darauf anwenden
> um am Ende noch alle gefunden Vektoren normalisieren.
>  Ich dachte eigentlich ich verstehe wie das geht, aber
> irgendwie doch nicht.
>  Ich nehme doch dann einen linear unabhängigen Vektor zu
> [mm]w_1,[/mm] z.b. [mm]\vektor{0 \\ 1 \\ 0}=:w_2[/mm]
>  und mache
> [mm]w_2-\bruch{}{}*w_1[/mm]
>  und dann nochmal mit einem weiteren linear unabhängigen
> Vektor. Nur leider komme ich nicht auf das richtige
> Ergebnis, was muss ich anders machen?
>


Poste dazu Deine bisherigen Rechenschritte
inklusive des gewünschten Ergebnisses.

Im übrigen ist [mm]=0[/mm].


> Vielen Dank!


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]