matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, Körpererzeugter Normalteiler
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gruppe, Ring, Körper" - erzeugter Normalteiler
erzeugter Normalteiler < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

erzeugter Normalteiler: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:47 Di 30.12.2014
Autor: Ladon

Hallo,

eine normale Untergruppe [mm] $N\vartriangleleft [/mm] G$ heißt von [mm] $S\subseteq [/mm] G$ erzeugter Normalteiler gdw N der Schnitt aller Normalteiler von G, die S enthalten, ist. Dies ist eine recht analoge Definition zu der einer erzeugten Untergruppe.
In der folgenden Formulierung des []Satzes (van Kampen) wird von der normalen Untergruppe gesprochen, die durch gewisse Elemente [mm] $i^{\alpha\beta}(g)i^{\beta\alpha}(g)^{-1}$ [/mm] erzeugt wird (bitte Kontext im Link nachlesen).

Kann ich hier den Darstellungssatz (s.u.) anwenden, wie er bei einer von einer Menge [mm] $X\subseteq [/mm] G$ erzeugten Untergruppe [mm] $U\le [/mm] G$ genutzt wird?
Darstellungssatz: Für alle [mm] $\emptyset\neq X\subseteq [/mm] G$ mit G Gruppe: [mm] :=\{x_1\cdots x_n|x_1,...,x_n\in X\cup X^{-1}, n\in\IN\}. [/mm]

Eine weitere Frage bezieht sich auf obigen []Satz: Ich halte die Formulierung für Fehlerhaft, wenn man []Hatcher S.43 (PDF-Seite: 52) zugrundelegt. In dem []Satz auf wikiversity ist [mm] g\in\pi_1(U_\alpha\cap U_\beta). [/mm] Damit kann [mm] i^{\alpha\beta} [/mm] keine Einbettung sein, die von [mm] U_\alpha\cap U_\beta [/mm] nach [mm] U_\alpha [/mm] abbildet! Weiterer Fehler: Es muss [mm] $i^{\alpha\beta}(g)i^{\beta\alpha}(g)^{-1}$ [/mm] nicht [mm] $i^{\alpha\beta}(g)i^{\beta\alpha}(g^{-1})$ [/mm] heißen.
Sind diese Fehlerbemerkungen korrekt?

Ich freue mich auf eure Antworten :-)

MfG
Ladon

        
Bezug
erzeugter Normalteiler: Antwort
Status: (Antwort) fertig Status 
Datum: 13:00 Di 30.12.2014
Autor: UniversellesObjekt


> Hallo,
>  
> eine normale Untergruppe [mm]N\vartriangleleft G[/mm] heißt von
> [mm]S\subseteq G[/mm] erzeugter Normalteiler gdw N der Schnitt aller
> Normalteiler von G, die S enthalten, ist. Dies ist eine
> recht analoge Definition zu der einer erzeugten
> Untergruppe.
>  In der folgenden Formulierung des
> []Satzes (van Kampen)
> wird von der normalen Untergruppe gesprochen, die durch
> gewisse Elemente [mm]i^{\alpha\beta}(g)i^{\beta\alpha}(g)^{-1}[/mm]
> erzeugt wird (bitte Kontext im Link nachlesen).
>  
> Kann ich hier den Darstellungssatz (s.u.) anwenden, wie er
> bei einer von einer Menge [mm]X\subseteq G[/mm] erzeugten
> Untergruppe [mm]U\le G[/mm] genutzt wird?
>  Darstellungssatz: Für alle [mm]\emptyset\neq X\subseteq G[/mm] mit
> G Gruppe: [mm]:=\{x_1\cdots x_n|x_1,...,x_n\in X\cup X^{-1}, n\in\IN\}.[/mm]

Fehlt da nicht noch etwas?


> Eine weitere Frage bezieht sich auf obigen
> []Satz:
> Ich halte die Formulierung für Fehlerhaft, wenn man
> []Hatcher S.43 (PDF-Seite: 52)
> zugrundelegt. In dem
> []Satz
> auf wikiversity ist [mm]g\in\pi_1(U_\alpha\cap U_\beta).[/mm] Damit
> kann [mm]i^{\alpha\beta}[/mm] keine Einbettung sein, die von
> [mm]U_\alpha\cap U_\beta[/mm] nach [mm]U_\alpha[/mm] abbildet! Weiterer
> Fehler: Es muss [mm]i^{\alpha\beta}(g)i^{\beta\alpha}(g)^{-1}[/mm]
> nicht [mm]i^{\alpha\beta}(g)i^{\beta\alpha}(g^{-1})[/mm] heißen.
>  Sind diese Fehlerbemerkungen korrekt?

Ja, es sollte [mm] $i^{\alpha\beta}\colon\pi_1(U_\alpha\cap U_\beta)\longrightarrow\pi_1(U_\alpha)$ [/mm] heißen. Dann macht [mm] $g\in\pi_1(U_\alpha\cap U_\beta)$ [/mm] auch Sinn. Außerdem ist das ein induzierter Gruppenhomomorphismus (so steht es auch im Hatcher), also ist [mm] $i^{\beta\alpha}(g)^{-1}$ [/mm] und$ [mm] i^{\beta\alpha}(g^{-1})$ [/mm] auch dasselbe.


> Ich freue mich auf eure Antworten :-)
>  
> MfG
>  Ladon

Liebe Grüße,
UniversellesObjekt

Bezug
                
Bezug
erzeugter Normalteiler: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:18 Di 30.12.2014
Autor: Ladon


> > Hallo,
>  >  
> > eine normale Untergruppe [mm]N\vartriangleleft G[/mm] heißt von
>  > [mm]S\subseteq G[/mm] erzeugter Normalteiler gdw N der Schnitt

> aller
> > Normalteiler von G, die S enthalten, ist. Dies ist eine
> > recht analoge Definition zu der einer erzeugten
> > Untergruppe.
>  >  In der folgenden Formulierung des
> >
> []Satzes (van Kampen)
> > wird von der normalen Untergruppe gesprochen, die durch
> > gewisse Elemente [mm]i^{\alpha\beta}(g)i^{\beta\alpha}(g)^{-1}[/mm]
> > erzeugt wird (bitte Kontext im Link nachlesen).
>  >  
> > Kann ich hier den Darstellungssatz (s.u.) anwenden, wie er
> > bei einer von einer Menge [mm]X\subseteq G[/mm] erzeugten
> > Untergruppe [mm]U\le G[/mm] genutzt wird?
>  >  Darstellungssatz: Für alle [mm]\emptyset\neq X\subseteq G[/mm]
> mit
> > G Gruppe: [mm]:=\{x_1\cdots x_n|x_1,...,x_n\in X\cup X^{-1}, n\in\IN\}.[/mm]
>  
> Fehlt da nicht noch etwas?

Inwiefern? Man könnte zum Darstellungssatz noch erwähnen:
Falls G abelsch, gilt für [mm] $a_1,...,a_n\in [/mm] G$: [mm] :=\{a_1^{\nu_1}\cdots a_n^{\nu_n}|\nu_1,..., \nu_n\in \IZ\} [/mm]
Insb. für die von [mm] $a\in [/mm] G$ erzeugte zyklische Untergruppe: [mm] :=\{a^\nu|\nu\in\IZ\} [/mm]
Oder meinst du den Hinweis, dass die normale Untergruppe von Elementen [mm] $i^{\alpha\beta}(g)i^{\beta\alpha}(g)^{-1}$, $g\in\pi_1(U_\alpha\cap U_\beta)$ [/mm] erzeugt ist?

>
> > Eine weitere Frage bezieht sich auf obigen
> >
>
[]Satz:
> > Ich halte die Formulierung für Fehlerhaft, wenn man
> > []Hatcher S.43 (PDF-Seite: 52)
> > zugrundelegt. In dem
> >
> []Satz
> > auf wikiversity ist [mm]g\in\pi_1(U_\alpha\cap U_\beta).[/mm] Damit
> > kann [mm]i^{\alpha\beta}[/mm] keine Einbettung sein, die von
> > [mm]U_\alpha\cap U_\beta[/mm] nach [mm]U_\alpha[/mm] abbildet! Weiterer
> > Fehler: Es muss [mm]i^{\alpha\beta}(g)i^{\beta\alpha}(g)^{-1}[/mm]
> > nicht [mm]i^{\alpha\beta}(g)i^{\beta\alpha}(g^{-1})[/mm] heißen.
>  >  Sind diese Fehlerbemerkungen korrekt?
>  Ja, es sollte [mm]i^{\alpha\beta}\colon\pi_1(U_\alpha\cap U_\beta)\longrightarrow\pi_1(U_\alpha)[/mm]
> heißen. Dann macht [mm]g\in\pi_1(U_\alpha\cap U_\beta)[/mm] auch
> Sinn. Außerdem ist das ein induzierter
> Gruppenhomomorphismus (so steht es auch im Hatcher), also
> ist [mm]i^{\beta\alpha}(g)^{-1}[/mm] und[mm] i^{\beta\alpha}(g^{-1})[/mm]
> auch dasselbe.

Stimmt. Es ist ja ein Gruppenhomomorphismus. Das habe ich nicht bedacht. Peinlich, peinlich....
Vielen Dank für deine Antwort!

LG
Ladon


Bezug
                        
Bezug
erzeugter Normalteiler: Antwort
Status: (Antwort) fertig Status 
Datum: 14:38 Di 30.12.2014
Autor: UniversellesObjekt

Sry, ich habe irgendwo etwas falsch gelesen bei dem, was du Darstellungssatz nennst. Aber worum ging es dir jetzt im ersten Teil der Frage? Wolltest du wissen, ob es auch einen Darstellungssatz für erzeugte Normalteiler gibt?

Den gibt es: Der erzeugte Normalteiler einer Menge ist genau [mm] $\langle \bigcup_{g\in G} gAg^{-1}\rangle [/mm] $. Allerdings ist das nicht besonders hilfreich (genauso wie der Darstellungssatz für Untergruppen). Wenn man im konkreten Fall den erzeugten Normalteiler berechnen möchte, nimmt man sich einen Normalteiler, zeigt, dass $ X $ darin enthalten ist, und zeigt, dass es der kleinste solche ist. Im übrigen gibt es bei der Definition, sowohl für erzeugte Untergruppen, als auch für Normalteiler, keinen Grund die Nichtleerheit von X zu fordern, es ist sogar konzeptionell falsch.

Oder was genau war jetzt deine Frage zum erzeugten Normalteiler?

Liebe Grüße,
UniversellesObjekt

Bezug
                                
Bezug
erzeugter Normalteiler: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:05 Di 30.12.2014
Autor: Ladon

Thx :-)
Damit ist alles geklärt!

LG
Ladon

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]