matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieerwartungswert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Wahrscheinlichkeitstheorie" - erwartungswert
erwartungswert < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

erwartungswert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:28 Do 08.04.2010
Autor: simplify

Aufgabe
Finde nicht unabhängige Zufallsvariablen X,Y, so dass dennoch E(XY)=E(X) E(Y) ist.

Hallo,
ich komme bei der Aufgabenstellung irgendwie nicht weiter.kann mir jemand helfen?



        
Bezug
erwartungswert: Normalverteilung
Status: (Antwort) fertig Status 
Datum: 18:58 Do 08.04.2010
Autor: Infinit

Hallo simplify,
wenn zwei Zufallsvariablen statistisch unabhängig voneinander sind, so gilt die Aussage aus Deiner Gleichung auf jeden Fall. Jetzt stellt sich die Frage, ob es Verteilungen gibt, die nicht statistisch unabhängig voneinander sind, für die die Aussage Deiner Gleichung jedoch auch gilt. Und tatsächlich, wenn die beiden Größen unkorreliert sind, so gilt diese Aussage auch. Ein beliebtes Beispiel hierfür ist eine Normalverteilung mit einem Korrelationskoeffizienten von Null.
Viele Grüße,
Infinit

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]