matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysisepsilon delt Definition
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - epsilon delt Definition
epsilon delt Definition < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

epsilon delt Definition: wie geht man da ran?
Status: (Frage) beantwortet Status 
Datum: 16:01 Sa 17.12.2005
Autor: morbiatus

Aufgabe
Zeigen sie mit der  [mm] \varepsilon [/mm] -  [mm] \delta [/mm] Definition das f: [mm] \IR-> \IR f(x)=x/(1+x^2) [/mm] an der stelle a=3 stetig

Also mir ist klar wie es im grunde funktionieren sollte. mann  wählt sich sein delta und zeigt dann das der abstand zwischen f(x) und f(a) immer kleiner  [mm] \varepsilon [/mm] ist. aber wie schreibe ich das hierfür auf?

        
Bezug
epsilon delt Definition: "Tipp"
Status: (Antwort) fertig Status 
Datum: 17:41 Sa 17.12.2005
Autor: Pollux

Hi,
Setzt doch mal [mm] |x/(1+x^2)- [/mm] 3/10| an. Dann versuchst du [mm] |x-3|<\delta [/mm] in [mm] |x/(1+x^2)- [/mm] 3/10| einzubringen. Hierfür musst du wahrscheinlich die Dreiecksungleichung, binomische Formeln,... verwenden. Wenn du durch geeignetes Abschätzen der Term durch [mm] \delta [/mm] ausgedrückt hast, setzt du die Schranke gleich [mm] \epsilon [/mm] und löst nach delta auf.
Die Aufgabe ist im Prinzip nur eine Rumrechnerei; zwar nicht unbedingt einfach, aber das Prinzip sollte jetzt klar sein,
mfg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]