endlich erzeugte R-Moduln < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 13:29 Di 05.08.2014 | Autor: | DrRiese |
Aufgabe | Sei R ein Integritätsbereich und 0 [mm] \not= [/mm] f [mm] \in [/mm] R keine Einheit.
Zeigen Sie, dass [mm] R[\bruch{1}{f}] [/mm] kein endlich erzeugter R-Modul ist. |
Hallo, beschäftige mich grad mit dieser Aufgabe. Bin mir aber nicht wirklich sicher. Meine Gedanken hierzu wären:
Da [mm] R[\bruch{1}{f}] [/mm] ein Ring [mm] \Rightarrow \bruch{1}{f^{2}} \in R[\bruch{1}{f}] [/mm] aufgrund der Ringmultiplikation.
Jedoch kann [mm] \bruch{1}{f^{2}} [/mm] nicht durch [mm] \bruch{1}{f} [/mm] mit Koffizienten aus R erzeugt werden, also ist [mm] \bruch{1}{f^{2}} [/mm] auch im Erzeugendensystem vom R-Modul [mm] R[\bruch{1}{f}]. [/mm] Ebenso [mm] \bruch{1}{f^{n}}, [/mm] n [mm] \in \IN. [/mm] Also Erzeugendensystem von [mm] R[\bruch{1}{f}] [/mm] unendlich.
Wäre das so ok?
Liebe Grüße
DrRiese
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:54 Di 05.08.2014 | Autor: | hippias |
> Sei R ein Integritätsbereich und 0 [mm]\not=[/mm] f [mm]\in[/mm] R keine
> Einheit.
> Zeigen Sie, dass [mm]R[\bruch{1}{f}][/mm] kein endlich erzeugter
> R-Modul ist.
> Hallo, beschäftige mich grad mit dieser Aufgabe. Bin mir
> aber nicht wirklich sicher. Meine Gedanken hierzu wären:
> Da [mm]R[\bruch{1}{f}][/mm] ein Ring [mm]\Rightarrow \bruch{1}{f^{2}} \in R[\bruch{1}{f}][/mm]
> aufgrund der Ringmultiplikation.
> Jedoch kann [mm]\bruch{1}{f^{2}}[/mm] nicht durch [mm]\bruch{1}{f}[/mm] mit
> Koffizienten aus R erzeugt werden,
Das muesste sehr ausfuehrlich begruendet werden.
> also ist
> [mm]\bruch{1}{f^{2}}[/mm] auch im Erzeugendensystem vom R-Modul
> [mm]R[\bruch{1}{f}].[/mm] Ebenso [mm]\bruch{1}{f^{n}},[/mm] n [mm]\in \IN.[/mm] Also
> Erzeugendensystem von [mm]R[\bruch{1}{f}][/mm] unendlich.
>
> Wäre das so ok?
Leider nein, denn die Aufgabenstellung lauetete nicht ein unendliches Erzeugendensystem zu konstruieren, sondern vielmehr zu zeigen, dass es kein endliches solches gibt. Der Beweis muesste also ungefaehr so losgehen: Sei $E$ ein Erzeugendensystem. Zu zeigen ist, dass $E$ keine endliche Menge ist. Deine bereits angestellten Ueberlegungen werden aber sicher noch eine Rolle spielen.
>
> Liebe Grüße
> DrRiese
|
|
|
|