matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche Differentialgleichungen"einfache" GDgl
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gewöhnliche Differentialgleichungen" - "einfache" GDgl
"einfache" GDgl < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

"einfache" GDgl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:18 So 21.10.2007
Autor: schachuzipus

Aufgabe
Zu lösen ist die GDgl

[mm] $y'=1+y^2$ [/mm]

Hallo zusammen,

wir haben gerade mit GDgl angefangen und ich werde noch verrückt, weil ich diese einfach aussehende DGl nicht verarztet bekomme.

Es soll wohl rauskommen: [mm] $y(x)=\tan(x+c)$ [/mm]

Das stimmt auch, wenn ma's ableitet, passt es

Ich habe zuerst versucht, das homogene Problem [mm] $y'=y^2$ [/mm] zu lösen.

Das ergab [mm] $\frac{dy}{dx}\frac{1}{y^2}=1\Rightarrow \frac{1}{y^2}dy=1dx$ [/mm]

Integrieren und umformen ergab [mm] $y=-\frac{1}{x+c}$ [/mm]

Nun Variation der Konstanten: [mm] $y(x)=-\frac{1}{x+c(x)}$ [/mm]

[mm] $\Rightarrow y'(x)=\frac{1+c'(x)}{(x+c(x))^2}=\frac{1}{(x+c(x))^2}+\frac{c'(x)}{(x+c(x))^2}$ [/mm]

Also Vergleich mit der Ursprungsgl. [mm] $\Rightarrow \frac{c'(x)}{(x+c(x))^2}=1$ [/mm]

Also [mm] $c'(x)=(x+c(x))^2$ [/mm]

Und nu ist Ende :(

Hoffe, jemand kann mir Erleuchtung bringen

LG

schachuzipus

        
Bezug
"einfache" GDgl: Trennung der Variablen
Status: (Antwort) fertig Status 
Datum: 00:35 Mo 22.10.2007
Autor: Loddar

Hallo schachuzipus!


Es geht viel leichter: mit Trennung der Variablen!

$$y' \ = \ [mm] 1+y^2$$ [/mm]
[mm] $$\bruch{dy}{dx} [/mm] \ = \ [mm] 1+y^2$$ [/mm]
[mm] $$\bruch{dy}{1+y^2} [/mm] \ = \ dx$$
[mm] $$\blue{\integral}\bruch{dy}{1+y^2} [/mm] \ = \ [mm] \blue{\integral}dx$$ [/mm]
[mm] $$\arctan(y) [/mm] \ = \ x+c$$

Gruß
Loddar


Bezug
                
Bezug
"einfache" GDgl: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:45 Mo 22.10.2007
Autor: schachuzipus

Hallo Loddar,

[bonk]

Brett vor'm Kopf. Ich hatte mich so auf die andere Rechnung versteift...


Danke sehr.

Warum klappt das denn mit meiner umständlichen Rechnung nicht?

Ich finde keinen Fehler... [kopfkratz3]

LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]