matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche Differentialgleichungeneinfache DGL
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - einfache DGL
einfache DGL < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

einfache DGL: wie macht man sowas?
Status: (Frage) beantwortet Status 
Datum: 16:04 Do 05.07.2007
Autor: celeste16

Aufgabe
Lösen Sie die folgende DGL:
a) [mm] x^{3}+y-2xy'=0 [/mm]

ich hatte das thema eigentlich als relativ unproblematisch in erinnerung, werde jetzt aber aus meinen aufzeichnungen nicht mehr schlau.
welche schritte muss ich bei gleichung machen um zum ziel zu kommen?

        
Bezug
einfache DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 18:57 Do 05.07.2007
Autor: Gonozal_IX

Hiho,

Erstmal umformen :-)

[mm]x^{3}+y-2xy'=0[/mm]

[mm]x^3 + y = 2xy'[/mm]

[mm]\bruch{x^2}{2} + \bruch{1}{2x}y = y'[/mm]

Nun hast du eine DGL der Form:

[mm]y' = a(x)y + b(x)\text{ mit } a(x) = \bruch{1}{2x} \text{ und } b(x) = \bruch{x^2}{2}[/mm]

Dies ist eine lineare inhomogene DGL, wo du bestimmt in deinen Aufzeichnungen was zu findest.

MfG,
Gono.

Bezug
                
Bezug
einfache DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:48 Fr 06.07.2007
Autor: celeste16

so?
[mm] y_{H}=ce^{-A(x)} [/mm]
[mm] a(x)=\bruch{1}{2x}, A(x)=\bruch{1}{2}lnx [/mm]
[mm] y_{H}=ce^{-\bruch{1}{2}lnx}=\bruch{c}{\wurzel{x}} [/mm]

[mm] y_{S}=c(x)e^{A(x)} [/mm] mit [mm] c(x)=\integral{b(x)e^{-A(x)}dx} [/mm]
[mm] c(x)=\bruch{1}{2}\integral{x^{2}\bruch{1}{\wurzel{x}}dx}= [/mm]
[mm] \bruch{1}{2}\integral{x^{1,5}dx}=\bruch{1}{5}x^{2,5} [/mm]
[mm] y_{S}=\bruch{1}{5}x^{2,5}^\wurzel{x}=\bruch{1}{5}x^{3} [/mm]

[mm] y=\bruch{c}{\wurzel{x}}+\bruch{1}{5}x^{3} [/mm]




Bezug
                        
Bezug
einfache DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 11:38 Fr 06.07.2007
Autor: setine

Hi Celeste16,

Ich bin mir nicht ganz sicher wie du es rechnest, aber bei der homogenen Lösung hat sich ein Fehler eingeschlichen, denn [mm] $y_h [/mm] = c [mm] \cdot \sqrt(x)$ [/mm]

Ah ja, und [mm] $y_s$ [/mm] stimmt ;)

Gruss, Setine

Bezug
                                
Bezug
einfache DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:45 Fr 06.07.2007
Autor: celeste16

aber bei mir steht [mm] y_{H}=ce^{\red{-A}} [/mm] und das wäre
-0,5lnx und das ist [mm] \bruch{1}{\wurzel{x}} [/mm]


Bezug
                                        
Bezug
einfache DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 12:26 Fr 06.07.2007
Autor: Gonozal_IX

Hiho,

wie kommst du drauf, dass die Lösung y= [mm] ce^{-A(x)} [/mm] ist?

[mm]y' = (ce^{-A(x)})' = ce^{-A(x)}*(-a(x)) = -a(x)ce^{-A(x)} = -a(x)y \text{ } \not= \text{ } a(x)y [/mm]

Die Lösung ist demzufolge [mm] ce^{A(x)} [/mm] und damit kommste auch drauf.

MfG,
Gono.

Bezug
                                                
Bezug
einfache DGL: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:41 Fr 06.07.2007
Autor: celeste16

die formel für [mm] y_{H} [/mm] stand so in einer formelsammlung, wenns doch + ist berichtige ichs. freut mich aber dass zumindest der rest stimmt - danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]