matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Matrizeneigenwerte einer unitären matr
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Matrizen" - eigenwerte einer unitären matr
eigenwerte einer unitären matr < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

eigenwerte einer unitären matr: korrektur
Status: (Frage) beantwortet Status 
Datum: 14:41 So 25.07.2010
Autor: sepp-sepp

Aufgabe
Beh.: eigenwerte einer unitären matrix sind nur 1,-1,i,-i

wollte nur wissen ob obige beh. stimmt. ich hätte schon gedacht es stimmt weil es ja heißt dass der betrag der ew einer unit. matrix nur 1 sein kann. wenn nicht kann jemand ein gegenbsp sagen?

        
Bezug
eigenwerte einer unitären matr: Antwort
Status: (Antwort) fertig Status 
Datum: 16:07 So 25.07.2010
Autor: schachuzipus

Hallo sepp-sepp,



> Beh.: eigenwerte einer unitären matrix sind nur 1,-1,i,-i [notok]
>  wollte nur wissen ob obige beh. stimmt. ich hätte schon
> gedacht es stimmt weil es ja heißt dass der betrag der ew
> einer unit. matrix nur 1 sein kann. [ok]

Komplexe Zahlen mit Betrag 1 liegen doch auf dem Rand des Einheitskreises!

Also ist auch ein EW [mm] $\lambda$ [/mm] einer (komplexen) unitären Matrix dort gelegen, er hat also die Form [mm] $\lambda=e^{i\varphi}$ [/mm]

> wenn nicht kann jemand
> ein gegenbsp sagen?

Puh, [mm] $\pmat{\frac{1}{\sqrt{7}}&\frac{2}{\sqrt{7}}i&\frac{1}{\sqrt{7}}(1-i)\\\frac{2}{\sqrt{5}}i&\frac{1}{\sqrt{5}}&0\\\sqrt{\frac{2}{35}}&\sqrt{\frac{8}{35}}&\sqrt{\frac{5}{14}}(-1+i)}$ [/mm]




Gruß

schachuzipus

Bezug
        
Bezug
eigenwerte einer unitären matr: Antwort
Status: (Antwort) fertig Status 
Datum: 07:45 Mo 26.07.2010
Autor: fred97

Ergänzend:

Sei t [mm] \in \IR [/mm] und die nxn-Matrix U def. durch

                 [mm] $U=e^{it}E$, [/mm] wobei E = nxn-Einheitsmatrix.

Dann ist U unitär und hat genau einen Eigenwert: [mm] \lambda= e^{it}. [/mm]

Du siehst also: jeder Punkt auf  der Einheitskreislinie ist Eigenwert einer geeigneten unitären Matrix

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]