matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebraebene zweier vektoren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - ebene zweier vektoren
ebene zweier vektoren < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ebene zweier vektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:52 Do 09.03.2006
Autor: thary

Hallo,


wie berechne ich die Ebene zweier Vektoren? Gleichsetzen? oder wie?

G1= [mm] \vektor{0+r \\ 2+r \\ -1+r} [/mm]
[mm] G2=\vektor{1+s \\ 3+s \\ 0+0s} [/mm]

Danke!

        
Bezug
ebene zweier vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 20:16 Do 09.03.2006
Autor: Daniel.85

Du benötigst die Punkt-Richtungs-Form:

Ein Punkt [mm] P_{1} [/mm] der Ebene E mit dem Ortsvektor [mm] \vec{r_{1}} [/mm] und zwei nicht-kollineare Richtungsvektoren [mm] \vec{a} \not= \vec{0} [/mm] und [mm] \vec{b} \not= \vec{0} [/mm] der Ebene

$ [mm] \vec{r} [/mm] ( [mm] \lambda [/mm] ;  [mm] \mu [/mm] ) = [mm] \vec{r_{1}} [/mm] + [mm] \lambda \vec{a} [/mm] + [mm] \mu \vec{b} [/mm] $

du hast 2 (nicht kollinineare) Richtungsvektoren und benötigst nun einen Punkt.

Wie du schon vermutet hast, erhälst du diesen, wenn du die beiden Richtungsvektoren gleichsetzt.

Gruß
Daniel

//Edit:
Ich habe grade nochmal kurz über deine beiden Vektoren nachgedacht.. wenn du die gleichsetzt würde das nichts bringen, denn du erhälst kein Ergebnis.
Die Vektoren dürften ja bereits Ortsvektoren sein. also ist der Punkt der 0-Punkt ... demnach ist [mm] \vec{r_{1}} [/mm] =  [mm] \vektor{0 \\ 0 \\ 0} [/mm]

Bezug
                
Bezug
ebene zweier vektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:21 Do 09.03.2006
Autor: thary

hallo,

danke erstmal.

die richtungsvektoren sind also nur die terme mit t oder alles? und  [mm] \lambda [/mm] und  [mm] \mu [/mm] sind nur variabeln?

doch, wenn ich die gleichsetze komme ich auf ein ergebnis.. und habe dann den punkt

r1= [mm] \vektor{1 \\ 3 \\ 0} [/mm]
danke!

Bezug
                        
Bezug
ebene zweier vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 07:03 Fr 10.03.2006
Autor: mathiash

Hallo und guten Morgen zusammen !

Ist jetzt thary schon zufrieden mit den bereits gegebenen Antworten ?
Erlaube mal, mich einzumischen.

Wenn man die Geradeninterpretation beibehaelt, so gibt es in der Tat den Schnittpunkt
mit den Parametern r=-1 und s=0, also

Schnittpunkt  (-1,1,-2)=(0,2,-1)+ [mm] (-1)\cdot [/mm] (1,1,1)

Dann ist die Ebene die Menge aller Vektoren


[mm] \{ (0,2,-1)+r\cdot (1,1,1)+s\cdot (1,1,0)\: |\: r,s\in\IR\} [/mm]

(oder man nimmt halt anstelle von r und s die Notation [mm] \lambda [/mm] und [mm] \mu). [/mm]

Ok soweit ?

Gruss,

Mathias



Bezug
        
Bezug
ebene zweier vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 20:37 Do 09.03.2006
Autor: Daniel.85

ich habe bei meiner obrigen Antwort glaube ich die Aufgabe falsch interprätiert...

angenommen G1 und G2 stehen für zwei Graden, dann ist die Aufgabenstellung auch eine ganz andere.

$ [mm] G_{1} [/mm] = [mm] \vektor{0 \\ 2 \\ -1} [/mm] + r [mm] \cdot \vektor{1 \\ 1 \\ 1} [/mm] $
$ [mm] G_{2} [/mm] = [mm] \vektor{1 \\ 3 \\ 0} [/mm] + s [mm] \cdot \vektor{1 \\ 1 \\ 0} [/mm] $

Nun sind deine "Vektoren" auch als Gradengleichungen zu erkennen ;-)

wenn die beiden Graden eine Ebene aufspannen, haben sie auch einen Schnittpunkt (dies wäre ggf zu überprüfen.)

einer der beiden Ortsvektoren [mm] \vektor{0 \\ 2 \\ -1} [/mm] oder [mm] \vektor{1 \\ 3 \\ 0} [/mm] wäre dein [mm] \vec{r_{1}} [/mm] ... die beiden Richtungsvektoren der Geradengleichungen wären dann die beiden Richtungsvektoren [mm] \vec{a} [/mm] und [mm] \vec{b} [/mm] der Ebene...

Ich hoffe so stimmts jetzt :-)

Bezug
                
Bezug
ebene zweier vektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:41 Do 09.03.2006
Autor: thary

ok, nun noch eine ganz kurze frage.. für die richtungsvektoren muss ich dann die richtungsvektoren mit den parametern r,s nehmen, die ich vorher ausgerechnet habe, als ich den schnittpunkt berechnet habe,oder?

danke!

Bezug
                        
Bezug
ebene zweier vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 20:51 Do 09.03.2006
Autor: Daniel.85

die Parameter s und t oder [mm] \lambda [/mm] und [mm] \mu [/mm] gehören zur Ebenengleichung du musst diese also nicht näher bestimmen.

Bezug
                                
Bezug
ebene zweier vektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:52 Do 09.03.2006
Autor: thary

das heisst ich kann die ebene nich weiter bestimmen?

Bezug
                                        
Bezug
ebene zweier vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 21:29 Do 09.03.2006
Autor: Daniel.85

eine Ebene besteht aus einem Ortsvektor,  2 Variablen und 2 Richtungsvektoren, da gibt es nichts weiteres zu bestimmen:

E: $ [mm] x=\vec{o}+ \mu \cdot \vec{r_{1}}+\nu \cdot \vec{r_{2}} [/mm] $

[mm] \vec{o}=Ortsvektor [/mm]
[mm] \vec{r}=Richtungsvektoren [/mm]

Das ist eine fertige Ebene in der es nichts Weiteres zu bestimmen gibt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]