matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnunge-funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integralrechnung" - e-funktion
e-funktion < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

e-funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:30 Sa 24.05.2008
Autor: Simge

Aufgabe
f(x)= [mm] a^x [/mm]
f´(x)= [mm] a^x*\bruch{1}{loga^e} [/mm]
wie lautet F(x)?

Hallo!

ich weiß nicht wie die Stammfunktion von dieser Aufgabe ist. mein lehrer meinte, es hätte mit der e-Funktion zu tun. Lautet dann die lösung
F(x)= [mm] a^x+c [/mm]
ich bräuchte dringend Hilfe!

danke im Vorraus!

liebe Grüße

simge

        
Bezug
e-funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:43 Sa 24.05.2008
Autor: schachuzipus

Hallo Simge,

du kannst [mm] $f(x)=a^x$ [/mm] umschreiben:

[mm] $a^x=e^{\ln\left(a^x\right)}=e^{x\cdot{}\ln(a)}$ [/mm]

Also kannst du [mm] $\int{a^x \ dx}$ [/mm] berechnen, indem du [mm] $\int{e^{\ln(a)\cdot{}x} \ dx}$ [/mm] berechnest


Gruß

schachuzipus


Bezug
                
Bezug
e-funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:55 Sa 24.05.2008
Autor: Simge

hmm, dann komm ich auf [mm] \int e^{\ln(a)\cdot{}x}*x+c [/mm]  oder?

kann sein dass ich ein fehler bei dem [mm] {\ln(a)\cdot{}x} [/mm] gemacht hab.

liebe Grüße

simge

Bezug
                        
Bezug
e-funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:07 Sa 24.05.2008
Autor: schachuzipus

Hallo Simge,

das passt nicht.

Wie sieht denn eine Stammfunktion zu [mm] $e^x$ [/mm] aus?

Doch so: [mm] $\int{e^x \ dx}=e^x [/mm] \ + \ c$

Nehmen wir eine Konstante [mm] $\alpha$ [/mm] hinzu und überlegen, was denn [mm] $e^{\alpha\cdot{}x}$ [/mm] abgeleitet ergibt?

Das ist nach Kettenregel [mm] $\blue{\left[e^{\alpha\cdot{}x}\right]'=\alpha\cdot{}e^{\alpha\cdot{}x}}$ [/mm]

Wenn du also eine Stammfunktion zu [mm] $e^{\alpha\cdot{}x}$ [/mm] suchst, bleibt ja auf jeden Fall der Exponent erhalten, du musst nur sehen, dass du den Faktor [mm] $\alpha$ [/mm] "ausgleichst"

Das geht durch Multiplikation mit [mm] $\frac{1}{\alpha}$ [/mm]

Eine Stammfunktion zu [mm] $e^{\alpha\cdot{}x}$ [/mm] ist also

[mm] $\int{e^{\alpha\cdot{}x} \ dx}=\frac{1}{\alpha}\cdot{}e^{\alpha\cdot{}x} [/mm] \ + \ c$

Leiten wir das mal wieder ab, um zu kontrollieren:

[mm] $\left[\frac{1}{\alpha}\cdot{}\blue{e^{\alpha\cdot{}x}} \ + \ c\right]'=\frac{1}{\alpha}\cdot{}\blue{\alpha\cdot{}e^{\alpha\cdot{}x}} [/mm] \ + \ [mm] 0=e^{\alpha\cdot{}x}$ [/mm]

Passt also ;-)


Nun ist in deiner Aufgabe der konstante Faktor [mm] $\alpha=\ln(a)$ [/mm]

Versuche mal, diese Überlegungen auf deine Aufgabe zu übertragen...


LG

schachuzipus

Bezug
                                
Bezug
e-funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:17 Sa 24.05.2008
Autor: Simge

ich habs glaub ich!

[mm] \bruch{1}{ln(a)}*e^{ln(a)*x} [/mm]

und das darf ich umwndeln in

[mm] \bruch{1}{ln(a)}*a^x [/mm]

ist das so richtig schachuzipus? Und vielen dank für deine Hilfe!

LG

simge

Bezug
                                        
Bezug
e-funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:19 Sa 24.05.2008
Autor: schachuzipus

Hi nochmal,

> ich habs glaub ich!
>  
> [mm]\bruch{1}{ln(a)}*e^{ln(a)*x}[/mm] [ok]
>  
> und das darf ich umwndeln in
>  
> [mm]\bruch{1}{ln(a)}*a^x[/mm]

[applaus]

>  
> ist das so richtig schachuzipus?

Jau, so ist's perfekt!

> Und vielen dank für deine Hilfe!
>  
> LG
>  
> simge


Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]