divergenz/ beweis < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:18 Do 10.01.2008 | Autor: | JazZi |
Aufgabe | Sei [mm]\left(x_n\right)[/mm] eine Folge mit [mm]\limes_{n \to \infty}\left(n*x_n\right)=c[/mm] mit [mm]c\not=0[/mm].
Zeigen Sie, dass die Reihe [mm]\summe_{}^{} x_n [/mm] divergent ist. |
Diese Aufgabe macht mir unglaubliche Schwierigkeiten!
Ich dachte, man könnte dies vielleicht durch einen Widerspruchsbeweis zeigen.
Dafür habe ich angenommen, dass [mm]\summe_{}^{} x_n [/mm] konvergent ist.
dann würde dies ja bedeuten: [mm]\limes_{n \to \infty}\left(x_n\right)=0[/mm], da [mm]\left(x_n\right)[/mm] Nullfolge ist.
Damit erhalte ich aber den Ausdruck: [mm]\limes_{n \to \infty}\left(n*x_n\right)=\limes_{n \to \infty} \left(n\right) * \limes_{n \to \infty} \left(x_n\right) = \infty * 0[/mm].
Und das ist ja wohl das Schlimmst,e was man schreiben kann, denn [mm]0*\infty[/mm] ist ja nich zwingend 0 sondern kann ja auch
jede andere beliebige Zahl annehmen!!
Hat jemand vielleicht einen Tipp, wie ich diesen Beweis weiterführen könnte, oder wie man noch da ran gehen könnte?
lg, JazZi
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:13 Do 10.01.2008 | Autor: | koepper |
Hallo JazZi,
> Sei [mm]\left(x_n\right)[/mm] eine Folge mit [mm]\limes_{n \to \infty}\left(n*x_n\right)=c[/mm]
> mit [mm]c\not=0[/mm].
> Zeigen Sie, dass die Reihe [mm]\summe_{}^{} x_n[/mm] divergent
> ist.
Sei c ohne Einschränkung strikt positiv. Betrachte die Folge [mm] $y_n [/mm] = [mm] \frac{c}{2n}$ [/mm] und zeige, daß die Differenzenfolge [mm] $x_n [/mm] - [mm] y_n$ [/mm] für hinreichend großes n strikt positiv ist. Damit dominiert [mm] $x_n$ [/mm] die Folge [mm] $y_n$ [/mm] und da die zu [mm] $y_n$ [/mm] gehörende Reihe divergent ist (was man durch Vergleich mit der harmonischen Reihe sofort sieht) folgt die Divergenz von [mm] $\sum x_n$.
[/mm]
Das nun ausführlich (!) auszuformulieren, überlasse ich mal dir
Gruß
Will
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 17:39 Fr 11.01.2008 | Autor: | JazZi |
Ich bin mir nicht sicher, ob dieser beweis so richtig sein soll.
mal angenommen: o.B.d.A. sei [mm]c>0[/mm].
Dann folgt [mm]\limes_{n \to \infty} x_n >0[/mm].
Damit [mm]\exists n_0\in \IN: x_n >0 \forall n \ge n_0[/mm].
Betrachte also wie du meinst [mm]y_n=\bruch{c}{2n}[/mm].
[mm]\exists n_1 \in \IN: x_n - y_n > 0 \forall n \ge n_1[/mm].
Da [mm]\summe_{i=1}^{\infty} y_n[/mm] divergent, folgt nach Minorantenkriterium: [mm]\summe_{i=1}^{\infty} x_n[/mm] divergent!
Aber wozu habe ich dann überhaupt gegeben, dass [mm]\limes_{n \to \infty} n*x_n = c[/mm]??
Das wird doch dann gar nich wirklich verwendet!
Oder habe ich einfach etwas nich beachtet (nach deinem Vorschlag)??
lg, JazZi
|
|
|
|
|
> Ich bin mir nicht sicher, ob dieser beweis so richtig sein
> soll.
>
> mal angenommen: o.B.d.A. sei [mm]c>0[/mm].
> Dann folgt [mm]\limes_{n \to \infty} x_n >0[/mm].
> Damit [mm]\exists n_0\in \IN: x_n >0 \forall n \ge n_0[/mm].
>
> Betrachte also wie du meinst [mm]y_n=\bruch{c}{2n}[/mm].
> [mm]\exists n_1 \in \IN: x_n - y_n > 0 \forall n \ge n_1[/mm].
>
> Da [mm]\summe_{i=1}^{\infty} y_n[/mm] divergent, folgt nach
> Minorantenkriterium: [mm]\summe_{i=1}^{\infty} x_n[/mm] divergent!
>
> Aber wozu habe ich dann überhaupt gegeben, dass [mm]\limes_{n \to \infty} n*x_n = c[/mm]??
> Das wird doch dann gar nich wirklich verwendet!
Aber sicher brauchst Du diese Information: dies besagt ja, dass sich [mm] $x_n$ [/mm] für grosse $n$ nahe bei [mm] $\frac{c}{n}>\frac{c}{2n}=y_n$ [/mm] befindet. Das heisst, Du benötigst diese Information um die Ungleichung [mm] $x_n-y_n>0$ [/mm] (für genügend grosses $n$) beweisen zu können.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:54 Fr 11.01.2008 | Autor: | JazZi |
Ahhhhhhhh daran hab ich ja noch gar nich gedacht!!
okay, dann leuchtet mir das ein!!
Aber noch eine kurze Frage: Muss ich den Fall [mm]c<0[/mm] auch noch betrachten, oder folgt der automatisch mit?
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:08 Fr 11.01.2008 | Autor: | Somebody |
> Ahhhhhhhh daran hab ich ja noch gar nich gedacht!!
> okay, dann leuchtet mir das ein!!
> Aber noch eine kurze Frage: Muss ich den Fall [mm]c<0[/mm] auch noch
> betrachten, oder folgt der automatisch mit?
Nicht direkt. Aber man könnte, statt für den Fall $c<0$ nochmals durch die im wesentlichen gleichen Argumente durchzuturnen, auch argumentieren, dass aus [mm] $\lim_{n\rightarrow \infty} [/mm] n [mm] x_n=c, [/mm] <0$ ja folgt, dass [mm] $\lim_{n\rigthtarrow \infty} n(-x_n)=-c, [/mm] >0$ gilt. Somit ist das bereits gelieferte Argument für die Folge der [mm] $-x_n$ [/mm] anwendbar, d.h. es folgt [mm] $\sum_n^\infty -x_n=+\infty$. [/mm] Also gilt [mm] $\sum_n^\infty x_n=-\infty$. [/mm] Die Reihe divergiert also auch im Falle $c<0$ (nur eben gegen [mm] $-\infty$ [/mm] statt gegen [mm] $+\infty$).
[/mm]
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:15 Fr 11.01.2008 | Autor: | JazZi |
okay danke, dann werde ich jetzt wohl damit klar kommen.
vielen dank!
Schönes Wochenende noch:)
lg, JazZi
|
|
|
|