matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Reihendivergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - divergenz
divergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

divergenz: Idee
Status: (Frage) beantwortet Status 
Datum: 12:05 Fr 25.05.2007
Autor: Emil2

Aufgabe
[mm] \summe_{n=1}^{\infty} \bruch{1}{n \wurzel[n]{n}} [/mm]

Hallo Ihr lieben,

ich suche gerade verzweifelt eine abschaetzung, warum diese Reihe divergiert. Hat da jemand vielleicht einen kleinen Tipp fuer mich?

Ich habe schon probiert sie mit der Hormonischen Reihe abzuschaetzen, jedoch sind meine abschaetzungen immer zu stark.
Aber eigentlich habe ich doch dort die hormonische Reihe plus [mm] \wurzel[n]{n} [/mm] was ja gegen 1 laeuft. Sie muesste also doch divergieren, oder taeusche ich mich da?


Alles Liebe
Emil

P.S.: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
divergenz: Folge unklar
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:09 Fr 25.05.2007
Autor: Roadrunner

Hallo Emil!


Wie lautet denn Deine aufzusummierende Folge?


[mm] $\bruch{1}{n*\wurzel[n]{n}}$ [/mm]    oder    [mm] $\bruch{1}{n+\wurzel[n]{n}}$ [/mm]


Gruß vom
Roadrunner




Bezug
        
Bezug
divergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 12:27 Fr 25.05.2007
Autor: Herby

Hallo Emil,


Tipp:  [mm] \wurzel[n]{n}<2 [/mm] und damit die Folge nach unten abschätzen - Minorantenkriterium anwenden.


Liebe Grüße
Herby

Bezug
                
Bezug
divergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:35 Fr 25.05.2007
Autor: Emil2

Hallo Herby,

vielen Dank. Auf diese Abschaetzung bin ich nicht gekommen.

Alles Liebe
Emil

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]