dim von mannigfaltigkeiten < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:38 Mo 06.02.2012 | Autor: | simplify |
Aufgabe | Zeigen Sie, dass die folgenden Mengen eingebettete Mannigfaltigkeiten denieren.Bestimmen Sie ihre Dimension.
M={ [mm] (x,y)\in \IR^{2} [/mm] I 2x=cos(y) }
N={ (x,y,z) [mm] \in \IR^{3} [/mm] I x+y+z=2x und [mm] e^{x+y+z}=33 [/mm] } |
hallo...
ich komm hier echt nicht weiter.wie kann ich denn die dimension einer ,mannigfaltigkeit bestimmen.ich suche schon die ganze zeit nach einem beispiel,aber werde nicht fündig.ich weiß auch erst recht nicht wie ich zeige,dass das eine eingebette mannigfaltigkeit ist.
kann mir jemand vielleicht 1-2 schritte verraten,was ich machen muss,quasi eine kleine anleitung geben!?danke schon mal.
|
|
|
|
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Hallo,
> Zeigen Sie, dass die folgenden Mengen eingebettete
> Mannigfaltigkeiten denieren.Bestimmen Sie ihre Dimension.
> M={ [mm](x,y)\in \IR^{2}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
I 2x=cos(y) }
> N={ (x,y,z) [mm]\in \IR^{3}[/mm] I x+y+z=2x und [mm]e^{x+y+z}=33[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
}
> hallo...
> ich komm hier echt nicht weiter.wie kann ich denn die
> dimension einer ,mannigfaltigkeit bestimmen.ich suche schon
> die ganze zeit nach einem beispiel,aber werde nicht
> fündig.ich weiß auch erst recht nicht wie ich zeige,dass
> das eine eingebette mannigfaltigkeit ist.
> kann mir jemand vielleicht 1-2 schritte verraten,was ich
> machen muss,quasi eine kleine anleitung geben!?danke schon
> mal.
Hattet Ihr in der VL nicht den Satz vom regulären Wert? Du kannst die Mengen M und N doch als Niveau-Mengen von geeigneten funktionen darstellen (zB. $M=f^{-1}(0)$ mit $f(x,y)=2x - \cos y$).
Wenn $f$ bestimmte eigenschaften erfüllt (siehe den obigen satz), dann ist M eine Untermannigfaltigkeit von $\mathbb{R}^2$. Auch Aussagen über die dimension von M lassen sich mit diesem Satz treffen.
gruss
matthias
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 18:31 Mo 06.02.2012 | Autor: | simplify |
danke erstmal für den tipp (der satz).
hab mir jetzt versucht viel dazu durchzulesen,aber es ist noch etwas unverständlich.
genrell wird von einer abb f: M->N gesprochen.
ist das in meinem fall [mm] f:\IR^{2} [/mm] -> M.
dann muss ich Df(x,y) berechnen, also Df(x,y)=(2,-sin(y)).
nun muss ich doch kritische bzw. reguläre werte bestimmen,oder?
ein kritische punkt ist doch (x,y) mit Df(x,y)=0.
das geht doch aber in dem fall nicht,weil die ableitung kein x mehr enthält.
ich fürchte mir fehlen noch einige zusammenhänge.
wie verfahre ich denn weiter oder mach ich gar schon quatsch.
|
|
|
|
|
> danke erstmal für den tipp (der satz).
> hab mir jetzt versucht viel dazu durchzulesen,aber es ist
> noch etwas unverständlich.
> genrell wird von einer abb f: M->N gesprochen.
> ist das in meinem fall [mm]f:\IR^{2}[/mm] -> M.
[mm] $f:\mathbb{R}^2\to \mathbb{R}$, [/mm] also [mm] $M=\mathbb{R}^2$ [/mm] und [mm] $N=\mathbb{R}$
[/mm]
> dann muss ich Df(x,y) berechnen, also
> Df(x,y)=(2,-sin(y)).
> nun muss ich doch kritische bzw. reguläre werte
> bestimmen,oder?
> ein kritische punkt ist doch (x,y) mit Df(x,y)=0.
> das geht doch aber in dem fall nicht,weil die ableitung
> kein x mehr enthält.
das ist genau der punkt: $Df(x,y)$ kann nicht $0$ werden, also sind alle werte regulär.
gruss
matthias
> ich fürchte mir fehlen noch einige zusammenhänge.
> wie verfahre ich denn weiter oder mach ich gar schon
> quatsch.
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 14:01 Mi 08.02.2012 | Autor: | simplify |
Nur noch mal zur sicherheit: die mannigfaltigkeit M hat die dimension 1,stimmts?
ich hab mich nun mit N beschäftigt.
meine erste frage ist: wenn ich 2 funktionen habe,ob ich dann beide ableite und ob die regulären werte dann allgemein für N gelten.
[mm] Df_{1}=(-1,1,1) [/mm] -> es gibt keine kritischen werte, also sind alle werte regulär
[mm] Df_{2}=(e^{x+y+z},e^{x+y+z},e^{x+y+z})-> [/mm] siehe [mm] Df_{1},dae^{x+y+z} [/mm] nicht null werden kann
die dimension wäre dann ebenfalls 1.
irgendwie trau ich meiner rechnerei nicht und wollte fragen,ob das soweit stimmt.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:18 Mi 08.02.2012 | Autor: | SEcki |
> Nur noch mal zur sicherheit: die mannigfaltigkeit M hat die
> dimension 1,stimmts?
Ja.
> ich hab mich nun mit N beschäftigt.
> meine erste frage ist: wenn ich 2 funktionen habe,ob ich
> dann beide ableite und ob die regulären werte dann
> allgemein für N gelten.
Bitte was?
> [mm]Df_{1}=(-1,1,1)[/mm] -> es gibt keine kritischen werte, also
> sind alle werte regulär
> [mm]Df_{2}=(e^{x+y+z},e^{x+y+z},e^{x+y+z})->[/mm] siehe
> [mm]Df_{1},dae^{x+y+z}[/mm] nicht null werden kann
> die dimension wäre dann ebenfalls 1.
> irgendwie trau ich meiner rechnerei nicht und wollte
> fragen,ob das soweit stimmt.
Die Rechnerei stimmt ... aber: die Funktionen, [m]f_1,f_2[/m] zusammen bilden eine Funktion f, und du musst [m]Df=(Df_1,Df_2)[/m] betrachten - und eben letzteres muss fuer deine Werte immer vollen Rang haben, wenn also die beiden oben linear abhaengig waeren, haettest du ein Problem.
Im Uebrigen: versucht, dir mal die Manigfaltigkeiten aufzumalen? Beide Beispiele sind eigentlich absurd einfach - wenn man ein bischen drueber nachdenkt. Und das hilft oft auch, allzumal wenn du zB den Satz vom reg. Wert fuer die Aufgabe nicht benutzen darfst.
SEcki
|
|
|
|