matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDeterminantendet & skalar
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Determinanten" - det & skalar
det & skalar < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

det & skalar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:42 Mi 16.01.2013
Autor: Aguero

Aufgabe
Verwenden sie die Eindeutigkeit der Determinante, um zu zeigen, dass für v,u,w [mm] \in \IR^{3} [/mm] gilt:

det [mm] \vektor{u^{t} \\ v^{t} \\ w^{t}} [/mm] = <u [mm] \times [/mm] v, w> .

Hallo,
reicht es die det auszurechnen und das kreuzprodukt&skalar zu bilden und danach das ergebnis der unbekannten anzuschauen?
wenn ich dieses mache, dann stimmt diese gleichung.

nun irritiert mich, dass ich die eindeutigkeit der determinante benutzen soll..


danke

        
Bezug
det & skalar: Antwort
Status: (Antwort) fertig Status 
Datum: 09:59 Do 17.01.2013
Autor: felixf

Moin!

> Verwenden sie die Eindeutigkeit der Determinante, um zu
> zeigen, dass für v,u,w [mm]\in \IR^{3}[/mm] gilt:
>  
> det [mm]\vektor{u^{t} \\ v^{t} \\ w^{t}}[/mm] = <u [mm]\times[/mm] v, w> .
>
>  Hallo,
> reicht es die det auszurechnen und das kreuzprodukt&skalar
> zu bilden und danach das ergebnis der unbekannten
> anzuschauen?

Nun, das zeigt die Gleichheit, das sollst du aber explizit nicht machen.

>  wenn ich dieses mache, dann stimmt diese gleichung.
>  
> nun irritiert mich, dass ich die eindeutigkeit der
> determinante benutzen soll..

Du sollst wie folgt vorgehen:

betrachte die Funktion $f(u, v, w) := [mm] \langle [/mm] u [mm] \times [/mm] v, w [mm] \rangle$. [/mm] Zeige, dass diese
(a) multilinear ist
(b) antisymmetrisch und
(c) fuer $u = [mm] e_1, [/mm] v = [mm] e_2, [/mm] w = [mm] e_3$ [/mm] den Wert 1 liefert.

Die Eindeutigkeit der Determinante sagt dann, dass $f(u, v, w) = [mm] \det \vektor{u^t \\ v^t \\ w^t}$ [/mm] gelten muss.

LG Felix


Bezug
                
Bezug
det & skalar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:51 Do 17.01.2013
Autor: Aguero


> Zeige, dass diese
>   (a) multilinear ist
>   (b) antisymmetrisch und

ist mit (b) alternierend

>   (c) fuer [mm]u = e_1, v = e_2, w = e_3[/mm] den Wert 1 liefert.

und mit (c) normiert gemeint?

ich weiß leider nicht wie ich es anstelle, im netz finde ich auch nichts anwendbares ...
kannst du mir da weiterhelfen?

Bezug
                        
Bezug
det & skalar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:07 Do 17.01.2013
Autor: Stueckchen

Hey,

Gibt es auch eine Möglichkeit in der Regel von Sarrus z.B. die Eindeutigkeit zu begründen?
Also mit dem Zeigen der Gleichheit auf die Eigenschaften zu schließen?

Bezug
                                
Bezug
det & skalar: Antwort
Status: (Antwort) fertig Status 
Datum: 09:06 Fr 18.01.2013
Autor: felixf

Moin,

> Gibt es auch eine Möglichkeit in der Regel von Sarrus z.B.
> die Eindeutigkeit zu begründen?
>  Also mit dem Zeigen der Gleichheit auf die Eigenschaften
> zu schließen?

natuerlich geht das, aber in der Aufgabenstellung ist etwas anderes gefordert.

LG Felix



Bezug
                        
Bezug
det & skalar: Antwort
Status: (Antwort) fertig Status 
Datum: 09:05 Fr 18.01.2013
Autor: felixf

Moin!

> > Zeige, dass diese
>  >   (a) multilinear ist
>  >   (b) antisymmetrisch und
>   ist mit (b) alternierend
>  >   (c) fuer [mm]u = e_1, v = e_2, w = e_3[/mm] den Wert 1
> liefert.
>  und mit (c) normiert gemeint?

Ja, so kann man es auch nennen :)

> ich weiß leider nicht wie ich es anstelle, im netz finde
> ich auch nichts anwendbares ...
>  kannst du mir da weiterhelfen?

Nun, du hast hier doch ein paar Eigenschaften, die du nachweisen musst. Tu das doch einach. Da brauchst du nicht viel im Netz fuer zu finden...

Schreib doch erstmal auf, wie die Eigenschaften (multilinear, alternierend, normiert) definiert sind. Und dann rechne damit los.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]