matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebra# der norm. irred. Polynomen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Algebra" - # der norm. irred. Polynomen
# der norm. irred. Polynomen < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

# der norm. irred. Polynomen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:05 So 02.06.2013
Autor: JCBrache

Aufgabe
Geben Sie eine Formel an für die Anzahl der normierten irreduziblen Polynome in Z/p[X] vom Grad 36 in Anhängigkeit von der Primzahl p.



Hallo,

mein Ansatz ist:

Es gibt ja insgesamt p^36 solche Polynome.
Es gibt dann p^(q-1) -> also p^35 Polynome, die an der Stelle [mm] a0*X^0 [/mm] = 0. Wir ziehen nun diese Polynome ab: p^36 - p^35.

So, wie rechne ich am kleversten und effizientesten weiter?

lg Juan


        
Bezug
# der norm. irred. Polynomen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:21 Mo 03.06.2013
Autor: sometree

Hallo Juan,

dein Ansatz wird dich mit ziemlicher Sicherheit nicht zum Ziel führen.

Ist [mm] $GF(q)\subseteq [/mm] GF [mm] (q^n)$ [/mm] eine Erweiterung endlicher Körper (GF(x) stehe für den Körper mit x Elementen) so ist die Anzahl der primitiven Elemente dieser Erweiterung gerade das n-fache der Anzahl der normierten irred. Polynome vom Grad n (warum?).

Die primitiven Elemente lassen sich relativ leicht bestimmen, es sind die Elemente von [mm] $GF(q^n)$ [/mm] die in keinem Unterkörper bzgl. der Erweiterung liegen. (warum?)


P.S. Wo so oft gibts auch eine Formel von Gauss:
Die Anzahl normierter irreduzibler Polynome vom Grad n über dem Körper GF(q) ist:
[mm] $\frac{1}{n}\sum\limits_{d \mid n} [/mm] \ [mm] \mu(n/d) \cdot q^{d}$ [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]