matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLängen, Abstände, Winkelbogenlänge - kreisevolvente
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Längen, Abstände, Winkel" - bogenlänge - kreisevolvente
bogenlänge - kreisevolvente < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

bogenlänge - kreisevolvente: Idee
Status: (Frage) beantwortet Status 
Datum: 14:35 So 07.06.2009
Autor: scr3tchy

Aufgabe
Die Länge der Kreisevolvente bestimmen.
       x = a (cos t + t sin t)
       y = a ( sin t - t cos t)           t [mm] \in [/mm] [0 , [mm] 2\pi] [/mm]

Hey Leute,

ich hab oben gegebene Aufgabe. Ich weiß überhaupt nich wie ich an diese Sache ran gehen soll. Ich weiß wie man eine Bogenlänge ausrechnet...allerdings nicht die von einer Kreisevolvente. Hoffe das mir hier jemand helfen kann.

        
Bezug
bogenlänge - kreisevolvente: Antwort
Status: (Antwort) fertig Status 
Datum: 14:57 So 07.06.2009
Autor: schachuzipus

Hallo scr3tchy,

> Die Länge der Kreisevolvente bestimmen.
>         x = a (cos t + t sin t)
>         y = a ( sin t - t cos t)           t [mm]\in[/mm] [0 ,
> [mm]2\pi][/mm]
>  Hey Leute,
>  
> ich hab oben gegebene Aufgabe. Ich weiß überhaupt nich wie
> ich an diese Sache ran gehen soll. Ich weiß wie man eine
> Bogenlänge ausrechnet...allerdings nicht die von einer
> Kreisevolvente. Hoffe das mir hier jemand helfen kann.  

Ich denke, die oben gegebene Kurve $(x(t),y(t))$ ist doch eine Kreisevolvente, berechne also nur wie üblich die Bogenlänge derselben (im Intervall [mm] $[0,2\pi]$) [/mm]

LG

schachuzipus


Bezug
                
Bezug
bogenlänge - kreisevolvente: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:10 So 07.06.2009
Autor: scr3tchy

ich kann das ganze echt wie gewohnt ausrechnen???
aber al noch eine doofe frage... :P
das gegebene y is doch mein f(x) oder???

Bezug
                        
Bezug
bogenlänge - kreisevolvente: Antwort
Status: (Antwort) fertig Status 
Datum: 16:06 So 07.06.2009
Autor: schachuzipus

Hallo nochmal,

> ich kann das ganze echt wie gewohnt ausrechnen??? [ok]
>  aber al noch eine doofe frage... :P
>  das gegebene y is doch mein f(x) oder???

Hm, du hast doch die Kurve (Kreisevolvente) [mm] $\gamma(t)=(x(t),y(t))$ [/mm] mit [mm] $t\in[0,2\pi]$ [/mm] gegeben.

Die Bogenlänge von [mm] $\gamma$ [/mm] ist [mm] $\int\limits_{0}^{2\pi}{||\gamma'(t)|| \ dt}=\int\limits_{0}^{2\pi}{||\left(x'(t),y'(t)\right)|| \ dt}=\int\limits_{0}^{2\pi}{\sqrt{\left(x'(t)\right)^2+\left(y'(t)\right)^2} \ dt}=...$ [/mm]

LG

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]