matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Sonstigesbeweisen oder widerlegen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Sonstiges" - beweisen oder widerlegen
beweisen oder widerlegen < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

beweisen oder widerlegen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:23 Di 27.01.2009
Autor: Lisa-19

Aufgabe
Beweise oder widerlege für a,b [mm] \in [/mm] IN:
a) [mm] a^2|b^2 [/mm] <-> [mm] T(a^2)\subseteq T(b^2) [/mm]
b) a|b         <-> [mm] T(a^2)\subseteq T(b^2) [/mm]

a)
"-->"
Sei c [mm] \in T(a^2), [/mm] also c| [mm] a^2 [/mm]
wegen Transitivität von | gilt:
[mm] (c|a^2 [/mm] und [mm] a^2|b^2) [/mm] folgt [mm] c|b^2 [/mm]
Also gilt c [mm] \in T(b^2) [/mm]
Also für alle c [mm] \in T(a^2) [/mm] gilt c [mm] \in T(b^2) [/mm]
also [mm] T(a^2) \subseteq T(b^2) [/mm]

"<--"
Da [mm] a^2\in T(a^2) [/mm] und [mm] T(a^2) \subseteq T(b^2) [/mm] gilt auch [mm] a^2\in T(b^2), [/mm] also [mm] a^2|b^2 [/mm]

Ist das so richtig?

b)
Kann man nicht beweisen oder? Wie kann ich es widerlegen?

        
Bezug
beweisen oder widerlegen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:25 Di 27.01.2009
Autor: Lisa-19

bei der Aufgabenstellung von b) hab eich mich vertan. Dort ist nur so ein Pfeil --> nicht <-->

Bezug
        
Bezug
beweisen oder widerlegen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:31 Di 27.01.2009
Autor: leduart

Hallo
a ist richtig.
ueberleg mal was aus a|b fuer [mm] a^2 [/mm] und [mm] b^2 [/mm] folgt? und dann verwende a)

Bezug
                
Bezug
beweisen oder widerlegen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:38 Di 27.01.2009
Autor: Lisa-19

Kann ich einfach zeigen, dass aus a|b folgt [mm] a^2|b^2 [/mm]
also:
a|b
[mm] \exists [/mm] p [mm] \in [/mm] IN: b=p*a
--> [mm] b^2=(p*a)^2 [/mm] = [mm] P^2*a^2 p^2:= [/mm] k [mm] \in [/mm] IN
[mm] b^2= k*a^2 [/mm]
und dann mache ich einfach das gleich wie bei a?

Bezug
                        
Bezug
beweisen oder widerlegen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:59 Di 27.01.2009
Autor: leduart

Hallo
irgendwie musst du dich vertippt haben, lies doch bitte deine posts mit Vorschau.


>  also:
>  a|b
>  [mm]\exists[/mm] p [mm]\in[/mm] IN: b=p*a
>  --> [mm]b^2=(p*a)^2[/mm] = [mm]P^2*a^2 p^2:=[/mm] k [mm]\in[/mm] IN

hier komm ich nicht mit. [mm] b^2=p^2*a^2 [/mm] mit [mm] p^2\in\IN [/mm]
also [mm] a^2|b^2 [/mm]
Gruss leduart

>  [mm]b^2= k*a^2[/mm]
>   und dann mache ich einfach das gleich wie bei
> a?

Nicht nochmal, du zitierst einfach a)
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]