matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Numerikbeste Approximation
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Numerik" - beste Approximation
beste Approximation < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

beste Approximation: Aufgabe
Status: (Frage) überfällig Status 
Datum: 12:28 Mi 05.05.2010
Autor: Rinchen1

Aufgabe
Seien E := C[-1,1] versehen mit der Maximumsnorm, G := π1 ⊂ E, und f1,f2 ⊂ E definiert durch f1(x) := [mm] -2x^2 [/mm] + 1 und f2(x) := 2x+1 für xϵ[-1,0]und [mm] -2x^2+1 [/mm] für x ϵ (0,1]
Seien gf1 bzw. gf2 die besten Approximationen von f1 bzw. f2 bzgl. G, und sei g(f1-f2) die beste Approximation von (f1-f2) bzgl. G. Beweisen oder widerlegen Sie: g(f1-f2) = gf1-gf2

Hallo zusammen!

Ich verzweifle gerade an diese Aufgabe. Zunächste habe ich f1-f2 ausgerechnet da erhält man [mm] -2x^2-2x [/mm] für xϵ[-1,0] und 0 für x ϵ(0,1]. Weiterhin muss ja gelten, dass  ∥f1-gf1∥≤∥f1-g∥  für alle gϵG gilt. Analoges gilt für f2 und gf2 und (f1-f2) und g(f1-gf2).
Wie kann ich nun die besten Approximationen gf1, gf2 und g(f1-f2) konkret berechnen? Oder muss ich das gar nicht um die Gleichung aus der Aufgabenstellung zu beweisen bzw. zu widerlegen?
Ich wäre für jede Hilfe dankbar!!!
Liebe Grüße
Rinchen

Ich habe die Frage in keinem Forum auf anderen Internetseiten gestellt!

        
Bezug
beste Approximation: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Fr 07.05.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]