beste Approximation < Numerik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Seien E := C[-1,1] versehen mit der Maximumsnorm, G := π1 ⊂ E, und f1,f2 ⊂ E definiert durch f1(x) := [mm] -2x^2 [/mm] + 1 und f2(x) := 2x+1 für xϵ[-1,0]und [mm] -2x^2+1 [/mm] für x ϵ (0,1]
Seien gf1 bzw. gf2 die besten Approximationen von f1 bzw. f2 bzgl. G, und sei g(f1-f2) die beste Approximation von (f1-f2) bzgl. G. Beweisen oder widerlegen Sie: g(f1-f2) = gf1-gf2 |
Hallo zusammen!
Ich verzweifle gerade an diese Aufgabe. Zunächste habe ich f1-f2 ausgerechnet da erhält man [mm] -2x^2-2x [/mm] für xϵ[-1,0] und 0 für x ϵ(0,1]. Weiterhin muss ja gelten, dass ∥f1-gf1∥≤∥f1-g∥ für alle gϵG gilt. Analoges gilt für f2 und gf2 und (f1-f2) und g(f1-gf2).
Wie kann ich nun die besten Approximationen gf1, gf2 und g(f1-f2) konkret berechnen? Oder muss ich das gar nicht um die Gleichung aus der Aufgabenstellung zu beweisen bzw. zu widerlegen?
Ich wäre für jede Hilfe dankbar!!!
Liebe Grüße
Rinchen
Ich habe die Frage in keinem Forum auf anderen Internetseiten gestellt!
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 13:20 Fr 07.05.2010 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|