bedingte Wahrscheinlichkeit < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:23 Fr 17.08.2012 | Autor: | Kuriger |
Aufgabe | Die Fluggesellschaften empfehlen uns, die Sicherheitsvorschriften genau zu lesen,
denn 80% derjenigen, die einen Fluzeugcrash ¨uberlebt haben, haben die Sicherheitsvorschriften
gelesen. Das Argument klingt im ersten Moment ¨uberzeugend,
bis man sich fragt, was denn diejenigen getan haben, die nicht ¨uberlebt haben.
Oder wieviele denn ¨uberlebt haben. Nehmen wir an, die Wahrscheinlichkeit, dass
ein beim Crash gestorbener Fluggast die Vorschriften gelesen hat, sei q. Aus der Statistik1 ist ausserdem bekannt dass ein Passagier bei einem Crash mit Wahrscheinlichkeit
0:75 umkommt.
a) Wie gross ist die Wahrscheinlichkeit, dass ein Fluggast ¨uberlebt, der die Sicherheitsvorschriften
gelesen hat?
b) Ein Kritiker behauptet, das Lesen der Sicherheitsvorschriften habe ¨uberhaupt
keinen Einfluss auf die U¨ berlebenschancen. Falls dies stimmt, welcher Anteil
der Flugg¨aste hat dann die Vorschriften gelesen?
c) Ein Sprecher der Fluggesellschaften behauptet, es werde immer sichergestellt,
dass alle Passagiere die Sicherheitsvorschriften studieren w¨urden. Kann
das stimmen?
d) Gibt es Werte von q, die den Schluss nahelegen, dass das Lesen der Sicherheitsvorschriften
die U¨ berlebenschancen verringert? |
Hallo
Also
A: Überlebt
B: Hat Sicherheitsvorschriften gelesen
Der Aufgabenstellung kann ich folgende Bedingungen entnehmen
P(B | A) = 0.8
[mm] P(\overline{B}| [/mm] A) = 0.2
P(B | [mm] \overline{A}) [/mm] = q
[mm] P(\overline{B}| \overline{A}) [/mm] = 1-q
[mm] P(\overline{A}) [/mm] = 0.75
P(A) = 0.25
Frage a)
Gesucht P(A | B)
P(B) = 0.2 + 0.75q
P(A | B) = [mm] \bruch{P(A) * P(B | A)}{P(B)} [/mm] = [mm] \bruch{0.25*0.8}{0.2+0.75q}
[/mm]
Frage b)
Oder damit wird eigentlich behauptet, dass das Ereginis B unabhängig vom Ereignis A ist?
Hab mal im Netz geschaut, dort wird die Unabhängigkeit wie folgt geprüft
P(A) * P(B) = P ( A [mm] \cap [/mm] B) ist dies gegeben so sind die Ereignisse A und B voneinander unabhängig
P ( A [mm] \cap [/mm] B) = P(A) * P(B | A)
0.25 * (0.2 + 0.75q) = 0.25 * 0.8
0.05 + 0.1875q = 0.2
q = 0.8
Und jetzt? Wenn P(B | [mm] \overline{A}) [/mm] = 0.8 dann sind die Ereignisse unabhängig?
Und stimmen die weiteren Ansätze?
c)
prüfen ob:
P(B) = 1
d)
prüfen ob:
P(A | B) < P(A | [mm] \overline{B})
[/mm]
|
|
|
|
Ich würde mir die gesamte Situation am Baum darstellen. Ich übernehme deine Bezeichnungen [mm]A,B[/mm].
[Dateianhang nicht öffentlich]
a)
stimmt
b)
Unabhängigkeit heißt, daß an den Ästen der zweiten Stufe dieselben bedingten Wahrscheinlichkeiten stehen müssen, unabhängig davon, ob [mm]A[/mm] oder [mm]\overline{A}[/mm] eingetreten ist. Daher folgt [mm]q = \frac{4}{5}[/mm], was dann zugleich auch die unbedingte Wahrscheinlichkeit von [mm]B[/mm] ist. Dein Ergebnis stimmt also auch hier.
c)
Dein Ansatz stimmt. Ich würde es mir allerdings einfacher machen: Selbst von den Überlebenden haben ja nur 80 % die Sicherheitsvorschriften gelesen ...
d)
Auch hier stimmt dein Ansatz. Aber auch jetzt lohnt es sich, den Baum anzuschauen. In b) haben wir ja bereits festgestellt: Für [mm]q = \frac{4}{5}[/mm] macht es keinen Unterschied, ob man liest oder nicht. Ab welchen [mm]q[/mm]-Werten wird das Lesen dann buchstäblich lebensgefährlich?
Dateianhänge: Anhang Nr. 1 (Typ: gif) [nicht öffentlich]
|
|
|
|