bandmatrix < Numerik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:31 Di 15.04.2008 | Autor: | lenz |
Aufgabe | zeigen sie das der gauß'sche algorithmus angewandt auf eine bandmatrix der bandbreite m,
matrizen R mit einer bandbreite [mm] \le [/mm] 2m-1 und L mit höchstens m nicht null elementen pro spalte liefert |
hallo
die bandbreite [mm] m=max_{1 \le i,j \le n}\{|i-j|;a_{ij} \not=0\}+1,
[/mm]
es geht um die zerlegung einer bandmatrix A in eine rechte obere dreiecksmatrix R mittels frobeniusmatrizen deren inverses produkt eine unipotente untere dreiecksmatrix L ergibt
soweit ich das verstanden hab.
das L höchstens m einträge pro spalte hat geht aus der definition der frobeniusmatrizen
hervor,nur mit oberen dreiecksmatrix wundert mich das,da frobeniusmatrizen als unipotente untere dreiecksmatrizen die rechte obere seite ja unberührt lassen sollten,womit die bandbreite ja m wäre.
vielleicht kann mir ja jemand einen tip geben
gruß lenz
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:01 Di 15.04.2008 | Autor: | zahllos |
Hallo lenz,
beim Gaußalgorithmus werden die von Null verschiedenen, unterhalb
der Hauptdiagonlen liegenden Elemente einer Spalte der Matrix A
mittels Zeilenumformungen zu Null gemacht. Unter Umständen muss
man Zeilenvertauschungen vornehmen, nämlich dann, wenn das Hauptdiagonalelement von A gleich Null ist.
Das bedeutet:
Um die erste Spalte von A auszuräumen, brauche ich maximal m-1 Zeilenumformungen, also hat die erste Spalte der Matrix L höchstens
m von Null verschiedene Elemente (die 1 auf der Hauptdiagonalen
plus die m-1 ersten Elemente unterhalb der Hauptdiagonalen).
Wenn ich bei diesen Zeilenumformungen auch Zeilenvertauschungen vornehmen muss, so ist der ungünstigste Fall der, bei dem die Zeile
m der Matrix A mit der ersten Zeile der Matrix A vertauscht werden
muss, in diesem Fall hat die erste Zeile der Matrix R maximal 2m-1
von Null verschiedene Elemente, nämlich das Diagonalelement und
die ersten 2m-2 Elemente oberhalb der Hauptdiagonalen.
Wenn die erste Spalte der Matrix A mit dem Gaußalgorithmus umgeformt ist, kann ich die gleiche Argumentation auf die jetzt entstandene Umtermatrix anwenden. Insgesamt folgt also: Die linke untere Dreiecksmatrix hat höchstens Bandbreite m und die rechte obere Dreiecksmatrix R hat höchstens Bandbreite 2m-1.
(Wenn bei der Durchführung des Algorithmus keine Zeilenver-
tauschungen erforderlich sind, hat R ebenfalls die Bandbreite m)
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 13:29 Mi 16.04.2008 | Autor: | lenz |
alles klar
danke für die antwort
gruß lenz
|
|
|
|