matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenkomplexe Zahlenaufspalten in real und imaginä
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "komplexe Zahlen" - aufspalten in real und imaginä
aufspalten in real und imaginä < komplexe Zahlen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

aufspalten in real und imaginä: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:14 Di 04.05.2010
Autor: domerich

Aufgabe
zwecks betragsbildung will ich in real und img. teil aufspalten was mir aber nicht gelingen will, da der nenner eine funktion 2. ordnung ist

[mm] \bruch{4jw-0.8w^2}{1+3.5jw-2.5w^2} [/mm]

ich habe versucht mit [mm] {1-3.5jw-2.5w^2} [/mm] durchzumultiplizieren was aber sehr aufwendig ist aber der nenner ist immerhin reel wie es aussieht:

[mm] \bruch{(4jw-0.8w^2)(1-3.5jw-2.5w^2)}{1+7.255w^2+6.25w^4} [/mm]

[mm] \bruch{2w^4+13.2w^2}{1+7.255w^2+6.25w^4}+\bruch{4w-7.2w^3}{1+7.255w^2+6.25w^4}j [/mm]

macht dieses vorgehen soweit überhaupt sinn?

        
Bezug
aufspalten in real und imaginä: Antwort
Status: (Antwort) fertig Status 
Datum: 13:28 Di 04.05.2010
Autor: schachuzipus

Hallo domerich,

> zwecks betragsbildung will ich in real und img. teil
> aufspalten was mir aber nicht gelingen will, da der nenner
> eine funktion 2. ordnung ist
>  
> [mm]\bruch{4jw-0.8w^2}{1+3.5jw-2.5w^2}[/mm]
>  ich habe versucht mit [mm]{1-3.5jw-2.5w^2}[/mm]
> durchzumultiplizieren was aber sehr aufwendig ist aber der
> nenner ist immerhin reel wie es aussieht:
>  
> [mm]\bruch{(4jw-0.8w^2)(1-3.5jw-2.5w^2)}{1+7.255w^2+6.25w^4}[/mm]
>  
> [mm]\bruch{2w^4+13.2w^2}{1+7.255w^2+6.25w^4}+\bruch{4w-7.2w^3}{1+7.255w^2+6.25w^4}j[/mm]
>  
> macht dieses vorgehen soweit überhaupt sinn?

Hmm, vllt. hilft es besser, wenn du den Nenner mal vorher faktorisierst:

[mm] $-2,5w^2+3,5jw+1=-\frac{5}{2}\cdot{}\left(w^2-\frac{7}{5}jw-\frac{2}{5}\right)$ [/mm]

Nun quadr. Ergänzung:

[mm] $\ldots=-\frac{5}{2}\cdot{}\left[\left(w-\frac{7}{10}j\right)^2+\frac{49}{100}-\frac{2}{5}\right]$ [/mm]

[mm] $=-\frac{5}{2}\cdot{}\left[\left(w-\frac{7}{10}j\right)^2+\frac{49}{100}-\frac{40}{100}\right]$ [/mm]

[mm] $=-\frac{5}{2}\cdot{}\left[\left(w-\frac{7}{10}j\right)^2-\left(\frac{3}{10}j\right)^2\right]$ [/mm]

Nun 3. binomische Formel ...

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]