matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebraapproximation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - approximation
approximation < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

approximation: Frage
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 18:03 Sa 05.02.2005
Autor: Gopal

Hallo,


ich soll folgende Aufgabe lösen:

Finden sie zu den Punkten (1,3), (2,1), (3,5), (4,2) im [mm] \IR^{2}Polynome [/mm] der Form

(i)   [mm] a_{1}x+a_{0}, [/mm]
(ii)  [mm] b_{2}x^{2}+b_{1}x+b_{0}, [/mm]
(iii) [mm] c_{3}x^{3}+c_{2}x_^{2}+c_{1}x+c_{0} [/mm]

wir haben dafür in der Vorlesung ein Lösungsverfahren kennengelernt und in der Übung ein anderes. aber beide haben wir nur für die geradengleichung besprochen.  
dementsprechend habe ich (i) gelöst: [mm] a_{1}=0,1 [/mm] und [mm] a_{0}=2,5. [/mm]

dabei habe ich y=(3,1,5,2) und x=(1,2,3,4) gesetzt. und v=(1,1,1,1)

Vorlesung:
sei U=Span(x,v) und [mm] u_{1}, u_{2} [/mm] eine ONB von U,
dann ist [mm] u_{0}=u_{1}+u_{2} \in [/mm] U mit minimalem Abstand von y.
dann kann man das Gleichungssystem [mm] u_{0}=a_{1}x+a_{0}v [/mm] lösen.

Übung:
[mm] \Delta:= [/mm] "Fehlervektor"
dann ist [mm] y=a_{1}x+a_{0}v+ \Delta. [/mm]
es gilt:  [mm] \Delta [/mm] minimal für < [mm] \Delta,x>=0 [/mm] und < [mm] \Delta,v>=0. [/mm]
man erhält daher durch skalarproduktbildung mit x und v zwei gleichungen mit zwei unbekannten.
--------------------------
soweit so gut. aber wie mache ich meinen ansatz für (ii) und (iii)? meine versuche es analog zu machen sind irgendwie alle gescheitert. wie sehen die vektoren [mm] x^{2} [/mm] und [mm] x^{3}aus? [/mm]

für einen hinweis wäre ich dankbar.

gopal




        
Bezug
approximation: Teilweise
Status: (Antwort) fertig Status 
Datum: 11:43 Mi 09.02.2005
Autor: Hexe

Also das Verfahren kenn ich nicht, ich kann dir aber auf jeden Fall sagen das bei dem Polynom vom Grad 3 eine exakte Lösung rauskommt - du hast 4 Punkte und 4 Unbekannte das gibt ein Gleichungssystem mit eindeutiger Lösung, das is zwar dann vielleicht nicht der weg den sie haben wollen, aber er ist auf jeden Fall richtig. Für den Vektor [mm] x^2 [/mm] würd ich auf blöd mal (1,4,9,16) nehmen oder wird das nix?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]