analytische funktion < komplex < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 10:54 Mi 04.06.2008 | Autor: | verkackt |
Aufgabe | Sei O [mm] \subset \IR^2 [/mm] offen.Für eine reelll analytische Funktion u:O [mm] \to \IR [/mm] definieren wir
[mm] v(z,\overline{z}) :=u(\bruch{z+\overline{z}}{2}, \bruch{z-\overline{z}}{2i})
[/mm]
1.Zeigen Sie formal, dass gilt: [mm] \Delta u(x,y)=4\bruch{\partial}{\partial z}\bruch{\partial}{\partial \overline{z}}v(z,\overline{z})
[/mm]
2.Wir betrachten nun z und [mm] \overline{z} [/mm] als unabhängige (reelle) Variablen.Zeigen Sie formel, dass sich die Lösung von [mm] \bruch{\partial}{\partial z}\bruch{\partial}{\partial \overline{z}}v(z,\overline{z})=0 [/mm] schreiben lässt als [mm] v(z,\overline{z})=f(z)+g(\overline{z})
[/mm]
3.Wie sieht dann die formale Lösung aus von [mm] \bruch{\partial}{\partial z}\bruch{\partial}{\partial \overline{z}}\bruch{\partial}{\partial z}\bruch{\partial}{\partial \overline{z}}v(z,\overline{z})=0 [/mm] ? |
Hallo,
ich komme leider mit den zweiten und dritten Teil der Aufgabe nicht klar.Den Teil 1 hab ich schon gemacht, aber bei 2 und 3 versteh ich die Aufgabe gar nicht.
Bei der 2 hab ich schon [mm] v(z,\overline{z}) [/mm] mit [mm] u(\bruch{z+\overline{z}}{2},\bruch{z-\overline{z}}{2i}) [/mm] ersetzt, was wiederum gleich u(Re z, Im z) ist .weiter komm ich leider nicht. Und bei der 3 glaub ich , fehlt mir denselben Ansatz wie bei der 2.Also solange ich den 2.Teil nicht verstehe kann ich nichts mit 3 anfangen.
Es wäre super nett, wenn einer mir einen Tipp geben könnte.
Lg.V.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:36 Mi 04.06.2008 | Autor: | verkackt |
Ich sehe solche Aufgaben sind gar nicht beliebt.Aber ich brauch dringend eine Hilfe.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:24 Do 05.06.2008 | Autor: | felixf |
Hallo
> Sei O [mm]\subset \IR^2[/mm] offen.Für eine reelll analytische
> Funktion u:O [mm]\to \IR[/mm] definieren wir
> [mm]v(z,\overline{z}) :=u(\bruch{z+\overline{z}}{2}, \bruch{z-\overline{z}}{2i})[/mm]
>
> 1.Zeigen Sie formal, dass gilt: [mm]\Delta u(x,y)=4\bruch{\partial}{\partial z}\bruch{\partial}{\partial \overline{z}}v(z,\overline{z})[/mm]
>
> 2.Wir betrachten nun z und [mm]\overline{z}[/mm] als unabhängige
> (reelle) Variablen.Zeigen Sie formel, dass sich die Lösung
> von [mm]\bruch{\partial}{\partial z}\bruch{\partial}{\partial \overline{z}}v(z,\overline{z})=0[/mm]
> schreiben lässt als
> [mm]v(z,\overline{z})=f(z)+g(\overline{z})[/mm]
> 3.Wie sieht dann die formale Lösung aus von
> [mm]\bruch{\partial}{\partial z}\bruch{\partial}{\partial \overline{z}}\bruch{\partial}{\partial z}\bruch{\partial}{\partial \overline{z}}v(z,\overline{z})=0[/mm]
> ?
>
> Hallo,
> ich komme leider mit den zweiten und dritten Teil der
> Aufgabe nicht klar.Den Teil 1 hab ich schon gemacht, aber
> bei 2 und 3 versteh ich die Aufgabe gar nicht.
> Bei der 2 hab ich schon [mm]v(z,\overline{z})[/mm] mit
> [mm]u(\bruch{z+\overline{z}}{2},\bruch{z-\overline{z}}{2i})[/mm]
> ersetzt, was wiederum gleich u(Re z, Im z) ist .weiter komm
> ich leider nicht.
Versuch's doch so: setze $f(z) = v(z, [mm] \overline{z}_0)$ [/mm] fuer ein festes [mm] $\overline{z}_0$. [/mm] Damit du jetzt [mm] $g(\overline{z}) [/mm] = v(z, [mm] \overline{z}) [/mm] - f(z)$ setzen kannst, muss $v(z, [mm] \overline{z}) [/mm] - f(z) = v(z, [mm] \overline{z}) [/mm] - v(z, [mm] \overline{z}_0)$ [/mm] unabhaengig von $z$ sein, sprich [mm] $\frac{d}{d z} [/mm] (v(z, [mm] \overline{z}) [/mm] - v(z, [mm] \overline{z}_0))$ [/mm] muss gleich 0 sein.
Hier kannst du jetzt mal $v(z, [mm] \overline{z}) [/mm] = [mm] u(\tfrac{z + \overline{z}}{2}, \tfrac{z - \overline{z}}{2})$ [/mm] einsetzen und gucken ob du das beweisen kannst.
> Und bei der 3 glaub ich , fehlt mir
> denselben Ansatz wie bei der 2.Also solange ich den 2.Teil
> nicht verstehe kann ich nichts mit 3 anfangen.
Nein, den brauchst du hier nicht, 3 ist viel einfacher.
Wenn [mm] $\bruch{\partial}{\partial z}\bruch{\partial}{\partial \overline{z}}\bruch{\partial}{\partial z}\bruch{\partial}{\partial \overline{z}}v(z,\overline{z})=0$ [/mm] gilt, muss nach 2. ja [mm] $\bruch{\partial}{\partial z}\bruch{\partial}{\partial \overline{z}}v(z,\overline{z})$ [/mm] von der Form $f(z) + [mm] g(\overline{z})$ [/mm] sein.
Und dann weisst du nach 1., dass [mm]\Delta u(x,y)=4\bruch{\partial}{\partial z}\bruch{\partial}{\partial \overline{z}}v(z,\overline{z})[/mm] gilt; also bekommst du die Gleichung $f(z) + [mm] g(\overline{z}) [/mm] = [mm] \frac{1}{4} \Delta [/mm] u(x, y)$.
Kannst damit was anfangen?
LG Felix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:47 Do 05.06.2008 | Autor: | verkackt |
Ja, danke dir.
|
|
|
|