matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche Differentialgleichungenallg. Lösung einer Dgl
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gewöhnliche Differentialgleichungen" - allg. Lösung einer Dgl
allg. Lösung einer Dgl < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

allg. Lösung einer Dgl: Korrektur
Status: (Frage) beantwortet Status 
Datum: 11:41 Sa 13.09.2008
Autor: crossblade

Aufgabe
[mm] \bruch{1}{2}\*e^{ln|2y+1|} [/mm] = [mm] e^{ln|sin x|} [/mm] * [mm] e^{c} [/mm]

Hallo, bitte um Hilfe,
der Umgang mit ln und der e-Funktion bereitet mir immer wieder Schwierigkeiten. Ich habe die allgemeine Lösung zu einer DGL soweit richtig, bis zu diesem Punkt:

[mm] \bruch{1}{2}\*e^{ln|2y+1|} [/mm] = [mm] e^{ln|sin x|} [/mm] * [mm] e^{c} [/mm]

ergibt

[mm] \bruch{1}{2}\*|2y+1|= [/mm] |sin x|*c

ist nicht richtig? der Bruch ist wohl dran schuld??

2y+1=2(sin x *c)
2y=2(sin x *c)-1
[mm] y=\bruch{2(sin x *c)-1}{2} [/mm]

Bitte um Hilfe Viele Grüße crossblade

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
allg. Lösung einer Dgl: Antwort
Status: (Antwort) fertig Status 
Datum: 11:49 Sa 13.09.2008
Autor: abakus


> [mm]\bruch{1}{2}\*e^{ln|2y+1|}[/mm] = [mm]e^{ln|sin x|}[/mm] * [mm]e^{c}[/mm]
>  Hallo, bitte um Hilfe,
>  der Umgang mit ln und der e-Funktion bereitet mir immer
> wieder Schwierigkeiten. Ich habe die allgemeine Lösung zu
> einer DGL soweit richtig, bis zu diesem Punkt:
>  
> [mm]\bruch{1}{2}\*e^{ln|2y+1|}[/mm] = [mm]e^{ln|sin x|}[/mm] * [mm]e^{c}[/mm]
>  
> ergibt
>  
> [mm]\bruch{1}{2}\*|2y+1|=[/mm] |sin x|*c

Genaugenommen müsste es heißen
[mm]\bruch{1}{2}\*|2y+1|=[/mm] |sin [mm] x|*e^c [/mm] ,
aber [mm] e^c [/mm] ist ja auch wieder nur eine Konstante.
Gruß Abakus

>  
> ist nicht richtig? der Bruch ist wohl dran schuld??
>  
> 2y+1=2(sin x *c)
>  2y=2(sin x *c)-1
>  [mm]y=\bruch{2(sin x *c)-1}{2}[/mm]
>  
> Bitte um Hilfe Viele Grüße crossblade
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


Bezug
                
Bezug
allg. Lösung einer Dgl: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 11:58 Sa 13.09.2008
Autor: crossblade

Aufgabe
2y+1=2(sin x *c)
2y=2(sin x *c)-1
y=(2(sin x *c)-1)/2
  

Ist dann meine Lösung für y richtig ? Bis auf die Konstante?
Danke

Bezug
                        
Bezug
allg. Lösung einer Dgl: Antwort
Status: (Antwort) fertig Status 
Datum: 14:42 Sa 13.09.2008
Autor: ArthurDayne

Ich denke, dass du nicht auf alle Lösungen kommst, wenn du den Betrag auf der linken und rechten Seite einfach wegfallen lässt.

Zum Beispiel folgt aus $|a|=|b|$ auch nicht sofort $a=b$. Da solltest du nochmal drüber nachdenken.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]