algebraische Körpererweiterung < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Wir betrachten einen Turm von Körpererweiterungen, [mm] K \subset L \subset M [/mm].
1. es seien [mm] a_1, ..., a_n \in L [/mm] und es gelte:
alle [mm] a_i , i = 1,...,n [/mm] sind algebraisch über [mm]K[/mm]
[mm] L = K(a_1,...,a_n)[/mm].
Zeige, dass [mm]L/K[/mm] algebraisch ist. |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Ich hatte sofort die Idee, dass man die Aufgabe ganz leicht mit der Gradformel und per Induktion zeigen kann. Aber das kommt mir irgendwie zu einfach vor. Gibts da einen Haken? Oder würdet ihr die Aufgabe genauso lösen?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:04 Sa 25.10.2008 | Autor: | Fry |
Hallo,
also das ganze induktiv zu lösen ist schon der richtige Gedanke. Allerdings benötigst du auch den entsprechenden Satz um Aussagen über die Endlichkeit von Körpererweiterungen zu machen:
Sei [mm] K\subset [/mm] L Körpererweiterung und [mm] a\in [/mm] L algebraisch über K. Dann ist K[a] ein Körper und [mm] K\subset [/mm] K[a] eine endliche Körpererweiterung.
IA: n=1: gilt nach obigem Satz
IV: Sei [mm] K[a_{1},...a_{n-1}] [/mm] endliche KE von K für festes,aber beliebiges n
IS: Mit obigem Satz und der IV ist dann [mm] K[a_{1},...a_{n-1}][a_{n}]= K[a_{1},...a_{n-1},a_{n}] [/mm] endliche KE über [mm] K[a_{1},...a_{n-1}] [/mm]
Dann gilt mit der Gradformel, dass [mm] K[a_{1},...a_{n-1},a_{n}] [/mm] endlich über K.
Weißt du erstmal, dass eine Körpererweiterung endlich ist, ist diese auch algebraisch (habt ihr das schon bewiesen ?)
VG
Christian
|
|
|
|
|
Danke für die Hilfe!
Das endliche KE auch algebraisch sind haben wir zum Glück schon gezeigt.
|
|
|
|