Äußere Normale < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 10:48 Di 03.02.2009 | Autor: | Denny22 |
Hallo an alle,
was verstehe ich eigentlich genau unter einer "äußeren Normalen"? Bei einigen Sätzen (wie beispielsweise dem Satz von Gauß, Greensche Formeln, u.s.w.) kommt es vor, dass die äußere Normale im Integranten eines Randintegrals auftaucht.
Sei [mm] $\Omega\subset\IR^d$ [/mm] ein Gebiet mit [mm] $\partial\Omega$ [/mm] Rand von [mm] $\Omega$. [/mm] Dann ist die äußere Normale im Punkt [mm] $x\in\partial\Omega$ [/mm] doch derjenige Vektor, der den Punkt $x$ als Aufpunkt besitzt, im Punkt $x$ senkrecht auf dem Rand [mm] $\partial\Omega$ [/mm] steht und vom Gebiet wegzeigt, richtig? Gibt es dafür auch eine mathematische Definition?
Danke und Gruß
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:20 Di 03.02.2009 | Autor: | SEcki |
> Sei [mm]\Omega\subset\IR^d[/mm] ein Gebiet mit [mm]\partial\Omega[/mm] Rand
> von [mm]\Omega[/mm]. Dann ist die äußere Normale im Punkt
> [mm]x\in\partial\Omega[/mm] doch derjenige Vektor, der den Punkt [mm]x[/mm]
> als Aufpunkt besitzt, im Punkt [mm]x[/mm] senkrecht auf dem Rand
> [mm]\partial\Omega[/mm] steht und vom Gebiet wegzeigt, richtig? Gibt
> es dafür auch eine mathematische Definition?
Ja, die gibt es. Aber im Wesentlichen muss man dazu die ganzen oberen Begriffe definieren, ich weiß nicht in wie fern (und welche genauen) ihr da benutzt, also hier mal eine: Sei der Rand von [m]\Omega[/m] eine Untermannigfalitgkeit vom [m]\IR^d[/m] (und damit von der Dimension d-1), die orientierbar ist. An jedem Punkt x des Randes gibt es einen Tangentialraum, aus Dimensionsgründen gibt es genau einen senkrechten (im euklidischen Raum!) Unterraum hierzu. In diesem gibt es zwei Vektoren der Länge eins. Nun ist die äußere Normale v der Vektor, der "rausragt" - und dies ist der, so dass ab einem kleinen [m]\varepsilon[/m] gilt: [m]\tau*v \not\in \Omega\forall 0<\tau <\varepsiloń[/m]. (für den anderen gilt es nicht - da muss man sich Untermannigfaltigkeiten mit Rand genauer ansehen, um diese Fakten exakt zu begründen.)
SEcki
|
|
|
|