matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLogikÄquivalenzrelation zeigen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Logik" - Äquivalenzrelation zeigen
Äquivalenzrelation zeigen < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenzrelation zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:22 Fr 25.11.2016
Autor: pc_doctor

Aufgabe
Zeigen Sie, dass jede reflexive Relation R [mm] \subseteq [/mm] AxA mit der Eigenschaft

[mm] \forall [/mm] a [mm] \in [/mm] A [mm] \forall [/mm] b [mm] \in [/mm] A [mm] \forall [/mm] c [mm] \in [/mm] A (aRB [mm] \wedge [/mm] cRb => cRa)  eine Äquivalenzrelation ist.


Hallo,

ich muss hier die Eigenschaften reflexiv, symmetrisch und transitiv zeigen.

Fangen wir mit der Symmetrie an, für Symmetrie gilt ja im Allgemeinen aRb => bRa

Ich weiß aber jetzt nicht, wie ich das auf die gegebene Relation anwenden soll.
Ein kleines Beispiel oder ein kleiner Denkanstoß wäre nett, damit ich sehe, wie ich das zeigen kann.

Vielen Dank im Voraus.

        
Bezug
Äquivalenzrelation zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:57 Fr 25.11.2016
Autor: leduart

Hallo
da steht : jede REFLEXIVE Relation, d,h, das musst du nicht beweisen, transitiv steht da schon also nur noch symmetrisch!
genauer lesen!
Gruß leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]