Äquivalenzrelation die 2te < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Zeigen Sie: V/ [mm] \sim [/mm] = V/U := {v + U | v [mm] \in [/mm] V }, wobei v + U := {v + u | u [mm] \in [/mm] U}. |
Hallo,
zunächst einmal zur notation: V/U bedeutet doch V ohne U oder?
zum verständnis: Ich soll zeigen das V ohne [mm] "\sim, [/mm] also die äquivalenzrelation" dasslbe aussagt wie V ohne U, wobei das wiederrum definiert ist als v + U? Wenn ich also ein v [mm] \in [/mm] V mit U addiere gilt die äquivalenz in V nicht mehr?
Und wie zum T. zeig ich das?
fragen über fragen...
gruss
mathlooser
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:36 Fr 23.11.2007 | Autor: | piet.t |
Hallo,
> Zeigen Sie: V/ [mm]\sim[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
= V/U := {v + U | v [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
V }, wobei v +
> U := {v + u | u [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
U}.
>
> zunächst einmal zur notation: V/U bedeutet doch V ohne U
> oder?
Nein, tut es nicht, denn dann wäre der Schrästrich anders herum - also $\setminus$, hier steht aber ein /.
Für eine Äquivalenzrelation \sim bezeichnet V/\sim die Menge aller Äquivalenzklassen in die V unter \sim zerfällt.
Im vorliegenden Fall soll für zwei Vektoren v und w aus V gelten, dass $ v\sim w \gdw v -w \in U$ (aber das müsste auch irgendwo in der Aufgabe stehen, was Du uns leider vorenthalten hast...).
Und Du hast jetzt die Aufgabe zu zeigen, dass die Menge dieser Äquivalenzklassen das gleiche ist wie die Menge aller (in ermangelung eines besseren Wortes) "Parallelenscharen" v+U.
D.h. am besten zeigst Du
1.) dass alle Vektoren in v+U bezüglich \sim äquivalent sind
und umgekehrt
2.)wenn zwei Vektoren v und w äquivalent bezüglich \sim sind liegen sie im gleichen v+U.
Ist es etwas klarer geworden??
Gruß
piet
|
|
|
|