matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraÄquivalenzrelation, Sym(M)
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Algebra" - Äquivalenzrelation, Sym(M)
Äquivalenzrelation, Sym(M) < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenzrelation, Sym(M): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:36 Do 30.03.2023
Autor: inkeddude

Guten Abend.

Ich bearbeite zurzeit eine Aufgabe über eine Äquivalenzrelation.
Die Aufgabe lautet:


Sei $M$ eine Menge und [mm] $\sigma \in [/mm] Sym(M)$ eine bijektive Selbstabbildung.

a. Für $a, b [mm] \in [/mm] M$ definieren wir eine Äquivalenzrelation auf $M$ durch $a [mm] \sim [/mm] b [mm] :\Leftrightarrow \exists\; [/mm] m [mm] \in \mathbb{Z}\; :\; [/mm] b = [mm] \sigma^{m}(a)$ [/mm]

b. Es sei  [mm] $\overline{a}$ [/mm] für $a [mm] \in [/mm] M$ eine endliche Äquivalenzklasse bezüglich [mm] $\sim$ [/mm] der Mächtigkeit [mm] $\vert \overline{a} \vert [/mm] = n < [mm] \infty$. [/mm] Dann gelten folgende Aussagen:

(i) Das Minimum $k = min [mm] \{ l > 0\; \vert \; \sigma^{l}(a) = a \}$ [/mm] existiert.
(ii) Für $q [mm] \in \mathbb{Z}$ [/mm] ist [mm] $\sigma^{q \cdot k}(a) [/mm] = a$
(iii) [mm] $\overline{a} [/mm] = [mm] \{a, \sigma(a), \ldots, \sigma^{k-1}(a) \}$ [/mm]
(iv) [mm] $\overline{a}$ [/mm] enthält genau $k$ Elemente.

Man muss $a)$ und $b)$ zeigen.

Bei der a) bin ich ganz gut zurecht gekommen.
Meine Lösung wäre:

Reflexivität:

Es gilt $a [mm] \sim [/mm] a$, denn es gibt ein $m [mm] \in \mathbb{Z}$ [/mm] mit $a = [mm] \sigma^{m}(a)$. [/mm] Wähle beispielsweise $m = 0$, dann ist [mm] $\sigma^{m} [/mm] = [mm] id_{M}$. [/mm] Und es gilt $a = [mm] id_{M}(a) [/mm] = [mm] \sigma^{0}(a)$ [/mm]

Symmetrie:

Es gelte $a [mm] \sim [/mm] b$, d.h. es gibt ein $m [mm] \in \mathbb{Z}$ [/mm] mit $b = [mm] \sigma^{m}(a)$. [/mm]

Wir müssen zeigen, dass $b [mm] \sim [/mm] a$, also dass ein $n [mm] \in \mathbb{Z}$ [/mm] mit $a = [mm] \sigma^{m}(b)$. [/mm]

Wir wissen, dass [mm] $\sigma^{m} \in [/mm] Sym(M)$, d.h. [mm] $\sigma^{m}$ [/mm] ist bijektiv. Da [mm] $\sigma^{m}$ [/mm] bijektiv ist, existiert die Umkehrabbildung [mm] $\left ( \sigma^{m} \right )^{- 1} [/mm] = [mm] \sigma^{- m} [/mm] $ (Gleichheit folgt aus den Potenzgesetzen für Gruppen). Für die gilt [mm] $\sigma^{- m} [/mm] (b) = a$.

Also existiert ein $n [mm] \in \mathbb{Z}$ [/mm] mit $a = [mm] \sigma^{m}(b)$, [/mm] nämlich $n = - m$.

Transitivität:

Es gelte $a [mm] \sim [/mm] b$ und $b [mm] \sim [/mm] c$.
Das heißt, es gibt $m,n [mm] \in \mathbb{Z}$ [/mm] mit $b = [mm] \sigma^{m}(a)$ [/mm] und $c = [mm] \sigma^{n}(b)$. [/mm]

Wir müssen $a [mm] \sim [/mm] c$ zeigen, d.h. es gibt ein $s [mm] \in \mathbb{Z}$ [/mm] mit $c = [mm] \sigma^{s}(a)$. [/mm]

Aus der Voraussetzung und den Potenzgesetzen für Gruppen erhält man

$c = [mm] \sigma^{n}(b) [/mm] = [mm] \sigma^{n}\left ( \sigma^{m}(a) \right [/mm] ) = [mm] \left ( \sigma^{n} \circ \sigma^{m} \right [/mm] ) (a) = [mm] \sigma^{n + m}(a)$ [/mm]

Es gibt also ein $s [mm] \in \mathbb{Z}$ [/mm] mit $c = [mm] \sigma^{s}(a)$, [/mm] nämlich $s = m + n$.


Nur bei der b) komme ich nicht weiter.
Wie zeige ich beispielsweise $(i)$?

Meine Idee war, dass ich vielleicht die erzeugte Untergruppe [mm] $\langle \sigma \rangle [/mm] = [mm] \{ \sigma^{l}\; \vert \; l \in \mathbb{Z} \}$ [/mm] betrachte.
Diese Untergruppe muss nicht endlich sein, weil $Sym(M)$ auch nicht endlich sein muss. Aber ich dachte mir, dass ich aus den Eigenschaften einer erzeugten Untergruppe eventuell die Existenz des Minimums folgern kann. Nur will mir da kein richtiger Ansatz einfallen.


Es wäre nett, wenn mir jemand helfen könnte!
Gruß, Inked

        
Bezug
Äquivalenzrelation, Sym(M): Antwort
Status: (Antwort) fertig Status 
Datum: 19:08 Do 30.03.2023
Autor: statler

Hallo!

> Ich bearbeite zurzeit eine Aufgabe über eine
> Äquivalenzrelation.
>  Die Aufgabe lautet:
>  
>
> Sei [mm]M[/mm] eine Menge und [mm]\sigma \in Sym(M)[/mm] eine bijektive
> Selbstabbildung.
>  
> a. Für [mm]a, b \in M[/mm] definieren wir eine Äquivalenzrelation
> auf [mm]M[/mm] durch [mm]a \sim b :\Leftrightarrow \exists\; m \in \mathbb{Z}\; :\; b = \sigma^{m}(a)[/mm]
>  
> b. Es sei  [mm]\overline{a}[/mm] für [mm]a \in M[/mm] eine endliche
> Äquivalenzklasse bezüglich [mm]\sim[/mm] der Mächtigkeit [mm]\vert \overline{a} \vert = n < \infty[/mm].
> Dann gelten folgende Aussagen:
>  
> (i) Das Minimum [mm]k = min \{ l > 0\; \vert \; \sigma^{l}(a) = a \}[/mm]
> existiert.
>  (ii) Für [mm]q \in \mathbb{Z}[/mm] ist [mm]\sigma^{q \cdot k}(a) = a[/mm]
>  
> (iii) [mm]\overline{a} = \{a, \sigma(a), \ldots, \sigma^{k-1}(a) \}[/mm]
>  
> (iv) [mm]\overline{a}[/mm] enthält genau [mm]k[/mm] Elemente.
>  
> Man muss [mm]a)[/mm] und [mm]b)[/mm] zeigen.
>  
> Bei der a) bin ich ganz gut zurecht gekommen.
>  Meine Lösung wäre:
>  
> Reflexivität:
>  
> Es gilt [mm]a \sim a[/mm], denn es gibt ein [mm]m \in \mathbb{Z}[/mm] mit [mm]a = \sigma^{m}(a)[/mm].
> Wähle beispielsweise [mm]m = 0[/mm], dann ist [mm]\sigma^{m} = id_{M}[/mm].
> Und es gilt [mm]a = id_{M}(a) = \sigma^{0}(a)[/mm]
>  
> Symmetrie:
>  
> Es gelte [mm]a \sim b[/mm], d.h. es gibt ein [mm]m \in \mathbb{Z}[/mm] mit [mm]b = \sigma^{m}(a)[/mm].
>  
> Wir müssen zeigen, dass [mm]b \sim a[/mm], also dass ein [mm]n \in \mathbb{Z}[/mm]
> mit [mm]a = \sigma^{m}(b)[/mm].
>  
> Wir wissen, dass [mm]\sigma^{m} \in Sym(M)[/mm], d.h. [mm]\sigma^{m}[/mm] ist
> bijektiv. Da [mm]\sigma^{m}[/mm] bijektiv ist, existiert die
> Umkehrabbildung [mm]\left ( \sigma^{m} \right )^{- 1} = \sigma^{- m}[/mm]
> (Gleichheit folgt aus den Potenzgesetzen für Gruppen).
> Für die gilt [mm]\sigma^{- m} (b) = a[/mm].
>  
> Also existiert ein [mm]n \in \mathbb{Z}[/mm] mit [mm]a = \sigma^{m}(b)[/mm],
> nämlich [mm]n = - m[/mm].
>  
> Transitivität:
>  
> Es gelte [mm]a \sim b[/mm] und [mm]b \sim c[/mm].
>  Das heißt, es gibt [mm]m,n \in \mathbb{Z}[/mm]
> mit [mm]b = \sigma^{m}(a)[/mm] und [mm]c = \sigma^{n}(b)[/mm].
>  
> Wir müssen [mm]a \sim c[/mm] zeigen, d.h. es gibt ein [mm]s \in \mathbb{Z}[/mm]
> mit [mm]c = \sigma^{s}(a)[/mm].
>  
> Aus der Voraussetzung und den Potenzgesetzen für Gruppen
> erhält man
>
> [mm]c = \sigma^{n}(b) = \sigma^{n}\left ( \sigma^{m}(a) \right ) = \left ( \sigma^{n} \circ \sigma^{m} \right ) (a) = \sigma^{n + m}(a)[/mm]
>  
> Es gibt also ein [mm]s \in \mathbb{Z}[/mm] mit [mm]c = \sigma^{s}(a)[/mm],
> nämlich [mm]s = m + n[/mm].

So weit so gut.

>  
>
> Nur bei der b) komme ich nicht weiter.
> Wie zeige ich beispielsweise [mm](i)[/mm]?
>  
> Meine Idee war, dass ich vielleicht die erzeugte
> Untergruppe [mm]\langle \sigma \rangle = \{ \sigma^{l}\; \vert \; l \in \mathbb{Z} \}[/mm]
> betrachte.
> Diese Untergruppe muss nicht endlich sein, weil [mm]Sym(M)[/mm] auch
> nicht endlich sein muss. Aber ich dachte mir, dass ich aus
> den Eigenschaften einer erzeugten Untergruppe eventuell die
> Existenz des Minimums folgern kann. Nur will mir da kein
> richtiger Ansatz einfallen.

Wie wäre es, einfach nur die Menge [mm]\{ \sigma^{l}(a) \ \textbar \ l \in \mathbb{N} \}[/mm] zu betrachten. Die ist endlich, warum? Dann können aber nicht alle Elemente paarweise verschieden sein.

> Es wäre nett, wenn mir jemand helfen könnte!

Und? Hilft der Hinweis? Sonst weiter fragen.

Gruß Dieter



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]