Äquivalenzrelation, Sym(M) < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Guten Abend.
Ich bearbeite zurzeit eine Aufgabe über eine Äquivalenzrelation.
Die Aufgabe lautet:
Sei $M$ eine Menge und [mm] $\sigma \in [/mm] Sym(M)$ eine bijektive Selbstabbildung.
a. Für $a, b [mm] \in [/mm] M$ definieren wir eine Äquivalenzrelation auf $M$ durch $a [mm] \sim [/mm] b [mm] :\Leftrightarrow \exists\; [/mm] m [mm] \in \mathbb{Z}\; :\; [/mm] b = [mm] \sigma^{m}(a)$
[/mm]
b. Es sei [mm] $\overline{a}$ [/mm] für $a [mm] \in [/mm] M$ eine endliche Äquivalenzklasse bezüglich [mm] $\sim$ [/mm] der Mächtigkeit [mm] $\vert \overline{a} \vert [/mm] = n < [mm] \infty$. [/mm] Dann gelten folgende Aussagen:
(i) Das Minimum $k = min [mm] \{ l > 0\; \vert \; \sigma^{l}(a) = a \}$ [/mm] existiert.
(ii) Für $q [mm] \in \mathbb{Z}$ [/mm] ist [mm] $\sigma^{q \cdot k}(a) [/mm] = a$
(iii) [mm] $\overline{a} [/mm] = [mm] \{a, \sigma(a), \ldots, \sigma^{k-1}(a) \}$
[/mm]
(iv) [mm] $\overline{a}$ [/mm] enthält genau $k$ Elemente.
Man muss $a)$ und $b)$ zeigen.
Bei der a) bin ich ganz gut zurecht gekommen.
Meine Lösung wäre:
Reflexivität:
Es gilt $a [mm] \sim [/mm] a$, denn es gibt ein $m [mm] \in \mathbb{Z}$ [/mm] mit $a = [mm] \sigma^{m}(a)$. [/mm] Wähle beispielsweise $m = 0$, dann ist [mm] $\sigma^{m} [/mm] = [mm] id_{M}$. [/mm] Und es gilt $a = [mm] id_{M}(a) [/mm] = [mm] \sigma^{0}(a)$
[/mm]
Symmetrie:
Es gelte $a [mm] \sim [/mm] b$, d.h. es gibt ein $m [mm] \in \mathbb{Z}$ [/mm] mit $b = [mm] \sigma^{m}(a)$.
[/mm]
Wir müssen zeigen, dass $b [mm] \sim [/mm] a$, also dass ein $n [mm] \in \mathbb{Z}$ [/mm] mit $a = [mm] \sigma^{m}(b)$.
[/mm]
Wir wissen, dass [mm] $\sigma^{m} \in [/mm] Sym(M)$, d.h. [mm] $\sigma^{m}$ [/mm] ist bijektiv. Da [mm] $\sigma^{m}$ [/mm] bijektiv ist, existiert die Umkehrabbildung [mm] $\left ( \sigma^{m} \right )^{- 1} [/mm] = [mm] \sigma^{- m} [/mm] $ (Gleichheit folgt aus den Potenzgesetzen für Gruppen). Für die gilt [mm] $\sigma^{- m} [/mm] (b) = a$.
Also existiert ein $n [mm] \in \mathbb{Z}$ [/mm] mit $a = [mm] \sigma^{m}(b)$, [/mm] nämlich $n = - m$.
Transitivität:
Es gelte $a [mm] \sim [/mm] b$ und $b [mm] \sim [/mm] c$.
Das heißt, es gibt $m,n [mm] \in \mathbb{Z}$ [/mm] mit $b = [mm] \sigma^{m}(a)$ [/mm] und $c = [mm] \sigma^{n}(b)$.
[/mm]
Wir müssen $a [mm] \sim [/mm] c$ zeigen, d.h. es gibt ein $s [mm] \in \mathbb{Z}$ [/mm] mit $c = [mm] \sigma^{s}(a)$.
[/mm]
Aus der Voraussetzung und den Potenzgesetzen für Gruppen erhält man
$c = [mm] \sigma^{n}(b) [/mm] = [mm] \sigma^{n}\left ( \sigma^{m}(a) \right [/mm] ) = [mm] \left ( \sigma^{n} \circ \sigma^{m} \right [/mm] ) (a) = [mm] \sigma^{n + m}(a)$
[/mm]
Es gibt also ein $s [mm] \in \mathbb{Z}$ [/mm] mit $c = [mm] \sigma^{s}(a)$, [/mm] nämlich $s = m + n$.
Nur bei der b) komme ich nicht weiter.
Wie zeige ich beispielsweise $(i)$?
Meine Idee war, dass ich vielleicht die erzeugte Untergruppe [mm] $\langle \sigma \rangle [/mm] = [mm] \{ \sigma^{l}\; \vert \; l \in \mathbb{Z} \}$ [/mm] betrachte.
Diese Untergruppe muss nicht endlich sein, weil $Sym(M)$ auch nicht endlich sein muss. Aber ich dachte mir, dass ich aus den Eigenschaften einer erzeugten Untergruppe eventuell die Existenz des Minimums folgern kann. Nur will mir da kein richtiger Ansatz einfallen.
Es wäre nett, wenn mir jemand helfen könnte!
Gruß, Inked
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:08 Do 30.03.2023 | Autor: | statler |
Hallo!
> Ich bearbeite zurzeit eine Aufgabe über eine
> Äquivalenzrelation.
> Die Aufgabe lautet:
>
>
> Sei [mm]M[/mm] eine Menge und [mm]\sigma \in Sym(M)[/mm] eine bijektive
> Selbstabbildung.
>
> a. Für [mm]a, b \in M[/mm] definieren wir eine Äquivalenzrelation
> auf [mm]M[/mm] durch [mm]a \sim b :\Leftrightarrow \exists\; m \in \mathbb{Z}\; :\; b = \sigma^{m}(a)[/mm]
>
> b. Es sei [mm]\overline{a}[/mm] für [mm]a \in M[/mm] eine endliche
> Äquivalenzklasse bezüglich [mm]\sim[/mm] der Mächtigkeit [mm]\vert \overline{a} \vert = n < \infty[/mm].
> Dann gelten folgende Aussagen:
>
> (i) Das Minimum [mm]k = min \{ l > 0\; \vert \; \sigma^{l}(a) = a \}[/mm]
> existiert.
> (ii) Für [mm]q \in \mathbb{Z}[/mm] ist [mm]\sigma^{q \cdot k}(a) = a[/mm]
>
> (iii) [mm]\overline{a} = \{a, \sigma(a), \ldots, \sigma^{k-1}(a) \}[/mm]
>
> (iv) [mm]\overline{a}[/mm] enthält genau [mm]k[/mm] Elemente.
>
> Man muss [mm]a)[/mm] und [mm]b)[/mm] zeigen.
>
> Bei der a) bin ich ganz gut zurecht gekommen.
> Meine Lösung wäre:
>
> Reflexivität:
>
> Es gilt [mm]a \sim a[/mm], denn es gibt ein [mm]m \in \mathbb{Z}[/mm] mit [mm]a = \sigma^{m}(a)[/mm].
> Wähle beispielsweise [mm]m = 0[/mm], dann ist [mm]\sigma^{m} = id_{M}[/mm].
> Und es gilt [mm]a = id_{M}(a) = \sigma^{0}(a)[/mm]
>
> Symmetrie:
>
> Es gelte [mm]a \sim b[/mm], d.h. es gibt ein [mm]m \in \mathbb{Z}[/mm] mit [mm]b = \sigma^{m}(a)[/mm].
>
> Wir müssen zeigen, dass [mm]b \sim a[/mm], also dass ein [mm]n \in \mathbb{Z}[/mm]
> mit [mm]a = \sigma^{m}(b)[/mm].
>
> Wir wissen, dass [mm]\sigma^{m} \in Sym(M)[/mm], d.h. [mm]\sigma^{m}[/mm] ist
> bijektiv. Da [mm]\sigma^{m}[/mm] bijektiv ist, existiert die
> Umkehrabbildung [mm]\left ( \sigma^{m} \right )^{- 1} = \sigma^{- m}[/mm]
> (Gleichheit folgt aus den Potenzgesetzen für Gruppen).
> Für die gilt [mm]\sigma^{- m} (b) = a[/mm].
>
> Also existiert ein [mm]n \in \mathbb{Z}[/mm] mit [mm]a = \sigma^{m}(b)[/mm],
> nämlich [mm]n = - m[/mm].
>
> Transitivität:
>
> Es gelte [mm]a \sim b[/mm] und [mm]b \sim c[/mm].
> Das heißt, es gibt [mm]m,n \in \mathbb{Z}[/mm]
> mit [mm]b = \sigma^{m}(a)[/mm] und [mm]c = \sigma^{n}(b)[/mm].
>
> Wir müssen [mm]a \sim c[/mm] zeigen, d.h. es gibt ein [mm]s \in \mathbb{Z}[/mm]
> mit [mm]c = \sigma^{s}(a)[/mm].
>
> Aus der Voraussetzung und den Potenzgesetzen für Gruppen
> erhält man
>
> [mm]c = \sigma^{n}(b) = \sigma^{n}\left ( \sigma^{m}(a) \right ) = \left ( \sigma^{n} \circ \sigma^{m} \right ) (a) = \sigma^{n + m}(a)[/mm]
>
> Es gibt also ein [mm]s \in \mathbb{Z}[/mm] mit [mm]c = \sigma^{s}(a)[/mm],
> nämlich [mm]s = m + n[/mm].
So weit so gut.
>
>
> Nur bei der b) komme ich nicht weiter.
> Wie zeige ich beispielsweise [mm](i)[/mm]?
>
> Meine Idee war, dass ich vielleicht die erzeugte
> Untergruppe [mm]\langle \sigma \rangle = \{ \sigma^{l}\; \vert \; l \in \mathbb{Z} \}[/mm]
> betrachte.
> Diese Untergruppe muss nicht endlich sein, weil [mm]Sym(M)[/mm] auch
> nicht endlich sein muss. Aber ich dachte mir, dass ich aus
> den Eigenschaften einer erzeugten Untergruppe eventuell die
> Existenz des Minimums folgern kann. Nur will mir da kein
> richtiger Ansatz einfallen.
Wie wäre es, einfach nur die Menge [mm]\{ \sigma^{l}(a) \ \textbar \ l \in \mathbb{N} \}[/mm] zu betrachten. Die ist endlich, warum? Dann können aber nicht alle Elemente paarweise verschieden sein.
> Es wäre nett, wenn mir jemand helfen könnte!
Und? Hilft der Hinweis? Sonst weiter fragen.
Gruß Dieter
|
|
|
|