matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLogikäquivalente Formeln
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Logik" - äquivalente Formeln
äquivalente Formeln < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

äquivalente Formeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:16 Sa 28.10.2006
Autor: sorry_lb

Aufgabe
a) Zeigen Sie, dass sich jede aussagenlogische Formel in eine äuivalente Formel umformen lässt, die nur den junktor [mm] \odot [/mm] enthält, wobei gilt (bitte tabelle denken):
a  b  a [mm] \odot [/mm] b
0  0    1
0  1    1
1  0    1
1  1    0

b) Zeigen Sie, dass sich jede aussagenlogische Formel in eine äquivalente Formel umformen lässt, die nur die Junktoren { [mm] \to [/mm] , [mm] \neg} [/mm] enthält.

c) Zeigen Sie, dass sich nicht jede aussagenlogische Formel in eine äquivalente Formel unformen lässt, die nur die Junktoren { [mm] \wedge [/mm] , [mm] \vee [/mm] , [mm] \to [/mm] } enthält.

zu a) versteh ich die aufgabe nicht oder is das einfach nicht möglich, weil es gibt doch keinen junktor, für den 0 und 0 = 1 und 1 und 1 =0 wird?

zu b) ja aber wie mach ich das denn allgemein, ich mein, ich weiß, dass es so ist, aber ich kann doch jetzt nicht mir irgendeine formel hernehmen, an der das zeigen und gut?!

zu c) analog b obwohl ich hier nur ein gegenbeispiel finden müsste oder?


Danke schonmal, falls mir irgendjemand die erleuchtung bringen kann.

        
Bezug
äquivalente Formeln: Antwort
Status: (Antwort) fertig Status 
Datum: 18:09 Sa 28.10.2006
Autor: Martin243

Hallo,

zu a):
Ich glaube, du verstehst die Aufgabe tatsächlich nicht. Hier geht es darum, dass der Junktor vorgegeben wird und du alle anderen notwendigen mit seiner Hilfe darstellen sollst.

Zuerst: Hierbei handelt es sich nach der Tabelle um ein NAND, also ein negiertes UND. Du kannst ja mal diese Tabelle mit der UND-Tabelle vergleichen.

Nun stellt sich die Frage, was sind denn die notwendigen Junktoren? Ich gehe mal davon aus, dass ihr dafür bislang die Menge [mm]\left\{\wedge, \vee, \neg\right\}[/mm] benutzt habt. Diese Menge ist funktional vollständig und das wollen wir nun auch für die Menge [mm]\left\{\odot\right\}[/mm] zeigen:

Wir zeigen, dass wir erzeugen können:
(1) ein [mm] \neg [/mm] mittels:
[mm]\neg x = x \odot x[/mm] (Tabelle -> prüfen)

(2) ein [mm] \wedge [/mm] aus der Defintion von [mm] \odot [/mm] und (1):
[mm]x \wedge y = \neg (x \odot y) = (x \odot y) \odot (x \odot y)[/mm] (Tabelle -> prüfen)

(3) ein [mm] \vee [/mm] aus (1), (2) und de Morgan:
[mm]x \vee y = \neg (\neg x \wedge \neg)[/mm]
[mm]= \neg ( (x \odot x) \wedge (y \odot y) )[/mm]
[mm]= \neg( ( (x \odot x) \odot (y \odot y) ) \odot ( (x \odot x) \odot (y \odot y) ) )[/mm]
[mm]= \left( \left( \left(x \odot x\right) \odot \left(y \odot y\right) \right) \odot \left( \left(x \odot x\right) \odot \left(y \odot y\right) \right) \right) \odot \left( \left( \left(x \odot x\right) \odot \left(y \odot y\right) \right) \odot \left( \left(x \odot x\right) \odot \left(y \odot y\right) \right) \right) [/mm]

Wir können also [mm] \neg, \wedge [/mm] und [mm] \vee [/mm] nur mit Hilfe von [mm] \odot [/mm] darstellen.



Zu b):
Versuch doch entweder [mm]\left\{\odot\right\}[/mm] oder [mm]\left\{\wedge,\vee,\neg\right\}[/mm] mit den gegebenen Junktoren zu realisieren.


Zu c):
Ja genau: ein Gegenbeispiel reicht.


Gruß
Martin

Bezug
                
Bezug
äquivalente Formeln: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Sa 28.10.2006
Autor: sorry_lb

Hab ganz lieben Dank, jetz hab ich erstmal die Aufgabe kapiert. a) hab ich verstanden und an b und c werd ich mich nachher nochmal ransetzen.
Werd sie aber morgen sicherlich nochmal zur korrektur reinsetzen *g

Danke und einen schönen Abend noch.
Liebe Grüße, sorry_lb

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]