matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenÄhnlichkeit von Matrizen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Matrizen" - Ähnlichkeit von Matrizen
Ähnlichkeit von Matrizen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ähnlichkeit von Matrizen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 17:17 So 01.02.2009
Autor: Christoph87

Aufgabe
Zwei Matrizen [mm]A,B \in M(nxn; K)[/mm] heißen ähnlich, wenn eine Matrix [mm]S \in GL(n;K)[/mm] existiert mit [mm]B = S * A * S^{-1}[/mm]. Zeige, dass [mm]\pmat{ a & 0 \\ 0 & b }[/mm] und [mm]\pmat{ a' & 0 \\ 0 & b' }[/mm] genau dann ähnlich sind, wenn a, b und a', b' bis auf Reihenfolge
übereinstimmen.

Hallo,
mein Ansatz war folgender:

[mm]B = S*A*S^{-1} \gdw B*S = S*A \gdw \pmat{ a & 0 \\ 0 & b }*\pmat{ c & d \\ e & f } = \pmat{ c & d \\ e & f }*\pmat{ a' & 0 \\ 0 & b' } \wedge c *f - d*e \not= 0[/mm]
[mm]\gdw[/mm] [mm]a*c = c*a'[/mm]
[mm] \wedge[/mm] [mm]a*d = d*b'[/mm]
[mm] \wedge[/mm] [mm]b*e = e*a'[/mm]
[mm] \wedge[/mm] [mm]b*f = f*b'[/mm]
[mm] \wedge[/mm] [mm]c*f - d*e \not= 0[/mm]

Naja... bisher scheint es so einigermaßen zu stimmen. Falls z.B. [mm]c=0[/mm], also [mm]a = a'[/mm]. Dann muss d und e ungleich 0 sein, aus welchen direkt folgen würde, dass [mm]a = b'[/mm] bzw. [mm]b = a'[/mm].

Jedoch schaffe ich es leider nicht von diesem Gleichungssystem umzuformen, dass so etwas da stehen würde:

Fall 1:
[mm]a = a' \wedge b = b'[/mm]
Fall 2:
[mm]a = b' \wedge b = a'[/mm]


Wie komme ich da weiter beim umformen oder habe ich noch etwas übersehen?

        
Bezug
Ähnlichkeit von Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:21 So 01.02.2009
Autor: alexwie

Hi
Machs doch ganz schnell:
Ähnliche Matrizen haben doch bekanntlich die gleichen Eigenwerte(i.A. aber nicht die gleichen Eigenräume) .  Bei einer Diagonalmatrix stehen die Eigenwerte in der diagonale. Damit also zwei Diagonalmatrizen die gleichen Eigenwerte haben müssen die gleichen einträge in der Diagonale stehen, wobei aber die Reihenfolge wurscht ist.
LG Alex

Bezug
                
Bezug
Ähnlichkeit von Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:35 So 01.02.2009
Autor: Christoph87

Hallo,
vielen Dank schon mal für die Antwort. Klingt auch ganz gut, aber da gibt es ein Problem. Wir hatten Eigenwerte noch nicht in der Vorlesung und dürfen das deswegen auch nicht auf den Übungsblätter benutzen. Eigenraum dürfen wir auch nicht benutzen.

Gibt es keine andere Möglichkeit?

Mfg,
Christoph

Bezug
                        
Bezug
Ähnlichkeit von Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:33 So 01.02.2009
Autor: Fugre

Hi Christoph,

Du hast die Aufgabe doch im Prinzip schon gelöst. Du kannst ja zwei Fälle unterscheiden.

Fall 1: [mm] c \vee f =0 [/mm]
[mm] a=b' \wedge a'=b [/mm]

Fall 2: [mm] d \vee e =0 [/mm]
[mm] a=a' \wedge b=b' [/mm]

Kurz noch die Argumentationskette aufschreiben und fertig.

Schöne Grüße
Nicolas

Bezug
                                
Bezug
Ähnlichkeit von Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:58 So 01.02.2009
Autor: Christoph87

Hallo,
danke für die Antwort. Genau da liegt mein Problem.
Das darf ich ja so nicht sagen? Laut meinen Gleichungen könnte man ja auch c,d,e,f so wählen:

[mm]c := 1[/mm]
[mm]d := 2[/mm]
[mm]f := 3[/mm]
[mm]e := 4[/mm]

Dann wäre [mm]c*f - d*e = 1*3 - 2*4 = -5 \not= 0[/mm].

Zudem wäre:
[mm]a*c = c*a' \gdw a * 1 = 1 * a' \gdw a = a'[/mm]
[mm]b*e = e*a' \gdw b*4 = 4*a' \gdw b = a'[/mm]
usw...
also [mm]a = a' = b = b'[/mm]


Ein Zahlenbeispiel zeigt auch:
[mm]\pmat{ 1 & 2 \\ 4 & 3 } * \pmat{ 3 & 0 \\ 0 & 3 } * \pmat{ 1 & 2 \\ 3 & 4 }^{-1} = \pmat{ 3 & 0 \\ 0 & 3 }[/mm]

Aber:
[mm]\pmat{ 1 & 2 \\ 4 & 3 } * \pmat{ 3 & 0 \\ 0 & 4 } * \pmat{ 1 & 2 \\ 3 & 4 }^{-1} = \pmat{4.6 & -0.4 \\ 2.4 & 2.4 }[/mm]

Also fehlen noch Informationen im Gleichungssystem? Weil im Moment kann ich ja noch falsche Matrizen S daraus erzeugen? Aber was fehlt?

Mit freundlichen Grüßen,
Christoph Böhler

Bezug
                                        
Bezug
Ähnlichkeit von Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:00 Mo 02.02.2009
Autor: angela.h.b.


> Hallo,
>  danke für die Antwort. Genau da liegt mein Problem.
> Das darf ich ja so nicht sagen? Laut meinen Gleichungen
> könnte man ja auch c,d,e,f so wählen:
>  
> [mm]c := 1[/mm]
>  [mm]d := 2[/mm]
>  [mm]f := 3[/mm]
>  [mm]e := 4[/mm]
>  
> Dann wäre [mm]c*f - d*e = 1*3 - 2*4 = -5 \not= 0[/mm].
>  
> Zudem wäre:
>  [mm]a*c = c*a' \gdw a * 1 = 1 * a' \gdw a = a'[/mm]
>  [mm]b*e = e*a' \gdw b*4 = 4*a' \gdw b = a'[/mm]
>  
> usw...
>  also [mm]a = a' = b = b'[/mm]
>  
>
> Ein Zahlenbeispiel zeigt auch:
>  [mm]\pmat{ 1 & 2 \\ 4 & 3 } * \pmat{ 3 & 0 \\ 0 & 3 } * \pmat{ 1 & 2 \\ 3 & 4 }^{-1} = \pmat{ 3 & 0 \\ 0 & 3 }[/mm]
>  
> Aber:
>  [mm]\pmat{ 1 & 2 \\ 4 & 3 } * \pmat{ 3 & 0 \\ 0 & 4 } * \pmat{ 1 & 2 \\ 3 & 4 }^{-1} = \pmat{4.6 & -0.4 \\ 2.4 & 2.4 }[/mm]
>  
> Also fehlen noch Informationen im Gleichungssystem? Weil im
> Moment kann ich ja noch falsche Matrizen S daraus erzeugen?
> Aber was fehlt?

Hallo,

zunächst einmal hast Du versehentlich  bei den ersten Matrizen unten die 3 und die 4 vertauscht. Das ist aber nur ein Nebenschauplatz.

Deine Aufgabe behauptet doch nicht, daß die zu [mm] \pmat{ a & 0 \\ 0 & b } [/mm]   ähnlichen Matrizen auch wieder Diagonalmatrizen sind.

Sondern sie sagt: falls zwei Diagonalmatrizen ähnlich sind, dann haben sie bis auf Reihenfolge dieselben Einträge auf der Diagonalen.

Das Problem, welches Du siehst, gibt es also gar nicht.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]