matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungableitung von ln
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Differenzialrechnung" - ableitung von ln
ableitung von ln < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ableitung von ln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:30 Mi 27.06.2007
Autor: mickeymouse

Aufgabe
[mm] f(x)=x(lnx)^{2} [/mm]
wie lauten die erste und die zweite ableitung der funktion?

zur ersten ableitung:
müsste doch mit der produktregel funktionieren, oder?
dann hab ich raus:
[mm] (lnx)^{2}+2lnx [/mm]
ist das richtig?
und als zweite ableitung hab ich:
[mm] 2\bruch{lnx}{x}+lnx [/mm]

        
Bezug
ableitung von ln: Antwort
Status: (Antwort) fertig Status 
Datum: 22:39 Mi 27.06.2007
Autor: schachuzipus

Hallo Erika,

> [mm]f(x)=x(lnx)^{2}[/mm]
>  wie lauten die erste und die zweite ableitung der
> funktion?
>  zur ersten ableitung:
>  müsste doch mit der produktregel funktionieren, oder?
>  dann hab ich raus:
>  [mm](lnx)^{2}+2lnx[/mm] [daumenhoch]
>  ist das richtig? yepp
>  und als zweite ableitung hab ich:
>  [mm]2\bruch{lnx}{x}+lnx[/mm]  [notok]

Die 2.Ableitung stimmt nicht ganz.

Den ersten Teil, also [mm] (\ln(x))^2 [/mm] hast du richtig abgeleitet zu [mm] 2\cdot{}\frac{\ln(x)}{x} [/mm]

Aber beim zweiten Term stimmt was nicht:

Bei [mm] 2\ln(x) [/mm] ist die 2 doch ne multiplikative Konstante, die tut also nix und [mm] \ln(x) [/mm] abgeleitet ist [mm] \frac{1}{x} [/mm]

also gibt [mm] 2\ln(x) [/mm] abgeleitet: [mm] 2\cdot{}\frac{1}{x}=\frac{2}{x} [/mm]

Also [mm] f''(x)=\frac{2\ln(x)}{x}+\frac{2}{x} [/mm]


Gruß

schachuzipus


Bezug
                
Bezug
ableitung von ln: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:43 Mi 27.06.2007
Autor: mickeymouse

danke!:)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]