matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebraabelsche gruppe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - abelsche gruppe
abelsche gruppe < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

abelsche gruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:10 So 20.04.2008
Autor: Tommylee

Aufgabe
Zeigen Sie , dass A : = [mm] \IR [/mm] \ {-1} mit der Verknüpfung * definiert durch
    
a*b := ab + a + b ( a,b [mm] \in [/mm] A )

eine kommutative ( abelsche ) Gruppe ist


Hallo ,

Also ich prüfe zu erst mal die Assiozivität :

(a*b)*c = a*(b*c)

mit      a*b := ab + a + b ( a,b [mm] \in [/mm] A )

also :   (a*b)*c  :=  (a*b)c + (a*b)+c   oder ?

Ziel :      ........        =  a*(b*c)      

Da ich die Umformung  nicht hinkriege  denke ich ich lieg total falsch


habt dank für rat

        
Bezug
abelsche gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 17:23 So 20.04.2008
Autor: schachuzipus

Hallo Thomas,

> Zeigen Sie , dass A : = [mm]\IR[/mm] \ {-1} mit der Verknüpfung *
> definiert durch
>      
> a*b := ab + a + b ( a,b [mm]\in[/mm] A )
>  
> eine kommutative ( abelsche ) Gruppe ist
>  
> Hallo ,
>
> Also ich prüfe zu erst mal die Assiozivität :
>  
> (a*b)*c = a*(b*c)
>  
> mit      a*b := ab + a + b ( a,b [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

A ) [ok]

>  
> also :   (a*b)*c  :=  (a*b)c + (a*b)+c   oder ? [otok]
>  
> Ziel :      ........        =  a*(b*c)      
>
> Da ich die Umformung  nicht hinkriege  denke ich ich lieg
> total falsch
>  
>
> habt dank für rat

Du musst stur einsetzen, das ist "nur" eine etwas lästige Rechnerei...

Fangen wir mit der linken Seite an:

$(\blue{a\star b})\star c=(\underbrace{\blue{ab+a+b}}_{=\green{\tilde{a}}})\star c$ nach der Definition von $\star$

Nun ist der gesamte Klammerausdruck dein "neues \tilde{a}"

$=\green{\tilde{a}}\star c=\tilde{a}c+\tilde{a}+c}$

Nun das \tilde{a} einsetzen

$=\green{(ab+a+b)}c+\green{(ab+a+b)}+c$

Nun rumrechnen und umformen:

$=abc+ac+bc+ab+a+b+c$

$=(abc+ab+ac)+a+bc+b+c$

$=a\red{(bc+b+c)}+a+\red{(bc+b+c)}$

$=a\star(\red{bc+b+c})=a\star(b\star c)$


LG

schachuzipus


Bezug
        
Bezug
abelsche gruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:56 So 20.04.2008
Autor: Tommylee

Hallo

habe bereits 0 als neutrales Element herausgefunden

Hab ein problem mit dem inversen  :

[mm] \forall [/mm] a [mm] \in [/mm] A  [mm] \exists [/mm] a` [mm] \in [/mm] A : a`* a = e

also

a*a` = a a` +a + a`

a*a`  =   e   =  0  also

a a` + a + a`  = 0

.......

thankks for help

Bezug
                
Bezug
abelsche gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 20:08 So 20.04.2008
Autor: zahllos

Hallo,

du weißt, dass aa'+a+a'=0 sein soll. Diese Gleichung kannst du nach a' auflösen: a'(a+1)=-a und damit [mm] a'=\frac{-a}{a+1} [/mm]

Die Gruppe ist abelsch, weil Addition und Multiplikation von reellen Zahlen kommutativ sind.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]