matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraabbildungsmatrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Algebra" - abbildungsmatrix
abbildungsmatrix < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

abbildungsmatrix: spiegelung
Status: (Frage) beantwortet Status 
Datum: 22:56 Mi 13.06.2007
Autor: Kathinka

hallöchen,
hab schon ein bisschen im forum hier gesucht und gefunden, dass die abbildungsmatrix für eine spiegelung so aussieht:

[mm] \pmat{ cos2\alpha & sin2\alpha \\ sin2\alpha & -cos2\alpha } [/mm]

hm, mir ist leider nur überhaupt nicht klar warum das so ist. wäre für eine kurze erklärung sehr dankbar, hab leider nichts dazu gefunden.

wenn ich nun eine gleitspiegelung habe, also eine spiegelung und danach eine parallelverschiebung des objekt, könnte ich das dann so darstellen?:

[mm] \pmat{ cos2\alpha & sin2\alpha \\ sin2\alpha & -cos2\alpha } [/mm] + [mm] \vektor{c1 \\ c2} [/mm]

wobei c1,c2 dann der verschiebungsvektor ist? und wenn ich nur eine veschiebung habe kann ich einfach meinen ursprungspunkt nehmen und auch den verschiebungsvektor addieren, da gibt es dann gar keine "abbildungsmatrix" in dem sinne oder?

vielen dank :) lg katja

        
Bezug
abbildungsmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 07:21 Do 14.06.2007
Autor: Somebody

>hallöchen,
> hab schon ein bisschen im forum hier gesucht und gefunden,
> dass die abbildungsmatrix für eine spiegelung so aussieht:
>  
> [mm]\pmat{ \cos 2\alpha & \sin 2\alpha \\ \sin 2\alpha & -\cos2\alpha }[/mm]
>  
> hm, mir ist leider nur überhaupt nicht klar warum das so
> ist. wäre für eine kurze erklärung sehr dankbar, hab leider
> nichts dazu gefunden.

[mm]\alpha[/mm] ist offenbar der Steigungswinkel der Gerade (durch den Ursprung), an der gespiegelt wird: die Spaltenvektoren der Abbildungsmatrix einer solchen linearen Abbildung sind einfach die Bilder der Basisvektoren: also überleg' mal, wie die beiden Basiseinheitsvektoren bei Spiegelung an dieser Geraden abgebildet werden. (Bem: Man könnte diese Abbildungsmatrix auch als Produkt dreier Abbildungsmatrizen erhalten: der Matrix einer Drehung um [mm]-\alpha[/mm], einer Spiegelung an der [mm]x[/mm]-Achse und einer Drehung um [mm]+\alpha[/mm].)

>
> wenn ich nun eine gleitspiegelung habe, also eine
> spiegelung und danach eine parallelverschiebung des objekt,
> könnte ich das dann so darstellen?:
>  
> [mm]\pmat{ \cos 2\alpha & \sin 2\alpha \\ \sin 2\alpha & -\cos 2\alpha } + \vektor{c_1 \\ c_2}[/mm]
>  
> wobei c1,c2 dann der verschiebungsvektor ist? und wenn ich
> nur eine veschiebung habe kann ich einfach meinen
> ursprungspunkt nehmen und auch den verschiebungsvektor
> addieren, da gibt es dann gar keine "abbildungsmatrix" in
> dem sinne oder?

Nein: bei einer linearen Abbildung ist ja der Ursprung des Koordinatensystems (bzw. der Nullvektor) stets ein Fixpunkt. Nimmst Du eine (nicht-null) Translation dazu, so erhältst Du eine "affine" Abbildung, die also, wie Du richtig gemerkt hast, nicht mehr eine lineare Abbildung im eigentlichen Sinne ist.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]