(a+b)³ = a³+b³ mod 3 < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Man zeige:
a) [mm] (a+b)^{3}=a^{3}+b^{3} [/mm] mod 3
b) [mm] (a+b)^{p}=a^{p}+b^{p} [/mm] mod p für alle Primzahlen p
Hinweis: Man benutze den kleinen Satz von Fermat.
c) Gilt [mm] (a+b)^{n}=a^{n}+b^{n} [/mm] mod n, für alle positiven Zahlen a,b,n?
|
ich hab mich bisher nur kurz mit a) beschäftigt und hätte eine leider sehr triviale idee:
mod 3 [mm] \Rightarrow [/mm] a,b [mm] \in [/mm] {0,1,2}
dann hätte ich eine multiplakitve gruppentafel gemacht
[mm] \vmat{ . & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 2 \\ 2 & 0 & 2 & 1}
[/mm]
und gesehen dass a² und b² [mm] \in [/mm] {0,1} sind.
wenn ich jetzt ausmultipliziere erhalte ich:
[mm] (a+b)^{3}= a^{3} [/mm] + [mm] b^{3} [/mm] + 2a²b + 2 ab² + a²b + ab²
unter der Voraussetzung dass [mm] a\not=b [/mm] ist, bedeutet dass das alle therme bis auf [mm] a^{3} [/mm] + [mm] b^{3} [/mm] wegfallen.
ist wie gesagt nur ne fixe idee von mir und ich hab auch keine ahnung ob das überhaupt geht.
sagt bitte mal was dazu (wenn ihr anmerkungen zu den anderen aufgaben habt: immer her damit, hab mich aber wie gesagt noch nicht damit beschäftigt)
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:45 Do 10.05.2007 | Autor: | felixf |
Hallo!
> Man zeige:
> a) [mm](a+b)^{3}=a^{3}+b^{3}[/mm] mod 3
> b) [mm](a+b)^{p}=a^{p}+b^{p}[/mm] mod p für alle Primzahlen p
> Hinweis: Man benutze den kleinen Satz von Fermat.
> c) Gilt [mm](a+b)^{n}=a^{n}+b^{n}[/mm] mod n, für alle positiven
> Zahlen a,b,n?
>
> ich hab mich bisher nur kurz mit a) beschäftigt und hätte
> eine leider sehr triviale idee:
>
> mod 3 [mm]\Rightarrow[/mm] a,b [mm]\in[/mm] {0,1,2}
> dann hätte ich eine multiplakitve gruppentafel gemacht
> [mm]\vmat{ . & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 2 \\ 2 & 0 & 2 & 1}[/mm]
>
> und gesehen dass a² und b² [mm]\in[/mm] {0,1} sind.
>
> wenn ich jetzt ausmultipliziere erhalte ich:
> [mm](a+b)^{3}= a^{3}[/mm] + [mm]b^{3}[/mm] + 2a²b + 2 ab² + a²b + ab²
>
> unter der Voraussetzung dass [mm]a\not=b[/mm] ist, bedeutet dass das
> alle therme bis auf [mm]a^{3}[/mm] + [mm]b^{3}[/mm] wegfallen.
Die Voraussetzung $a [mm] \neq [/mm] b$ brauchst du gar nicht.
Deine Idee ist sehr gut (und auch der Standard-Ansatz), dazu benoetigt man allerdings den Hinweis gar nicht.
Was du machst, ist $(a + [mm] b)^p [/mm] = [mm] \sum_{i=0}^p \binom{p}{i} a^i b^{p-i}$ [/mm] zu schreiben; du musst zeigen, dass [mm] $\binom{p}{i}$ [/mm] fuer $0 < i < p$ durch $p$ teilbar ist, also kongruent zu $0$ modulo $p$ ist. Damit folgt dann $(a + [mm] b)^p \equiv a^p [/mm] + [mm] b^p \pmod{p}$.
[/mm]
Das ist so richtig und gilt auch noch viel allgemeiner (in allen kommutativen Ringen der Charakteristik $p$, wenn dir das was sagt).
Der von den Aufgabenstellern gewuenschte Ansatz ist wohl eher, dass du [mm] $x^p \equiv [/mm] x [mm] \pmod{p}$ [/mm] fuer alle $x [mm] \in \IZ$ [/mm] zeigst. Daraus folgt dann natuerlich sofort $(x + [mm] y)^p \equiv [/mm] x + y [mm] \equiv x^p [/mm] + [mm] y^p \pmod{p}$. [/mm] Und um das zu zeigen, dafuer brauchst du den kleinen Satz von Fermat.
Dieser Beweisansatz funktioniert nur, wenn man modulo $p$ rechnet (bzw. in [mm] $\IZ/p\IZ$, [/mm] also dem endlichen Koerper mit $p$ Elementen -- falls dir das was sagt).
Die Aussage zu (c) stimmt im allgemeinen nicht; du kannst ja mal ein konkretes Gegenbeispiel suchen. (Dazu sollte $n$ keine Primzahl sein, sonst wuerde es nach (b) ja funktionieren...)
LG Felix
|
|
|
|