matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieZylinderschnitt Ebene 2 Winkel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Topologie und Geometrie" - Zylinderschnitt Ebene 2 Winkel
Zylinderschnitt Ebene 2 Winkel < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zylinderschnitt Ebene 2 Winkel: Rechnerische Lösung
Status: (Frage) überfällig Status 
Datum: 10:31 Fr 15.05.2015
Autor: Mobbi

Aufgabe
Ein waagerechter Hohlzylinder (Rohr Øinnen 1000 Øaußen 1240) schneidet eine schiefe Ebene (Böschung) mit der Neigung 1:1,5 = 56,3° (zur Vertikale) in einem Horizontalwinkel von 25°. Die Schnittfläche ergibt eine Ellipse.
Gesucht: 1. Verrollwinkel der Hauptachse zur Vertikalachse
         2. Winkel der Hauptachse zur Rohrachse (Schnittwinkel)

Ich habe bisher eine grafischen Konstruktionsansatz ( [a]Datei-Anhang). Der geht zwar ungefähr auf aber eben nicht ganz, da hier ein paar Vereinfachungen gemacht wurden. Außerdem ist der Weg zur Lösung recht lang und zeitaufwendig.
Ich suche nach einer rechnerischen Lösung. Vektorrechnung und Funktionsgleichungen sind jedoch einfach zu lange her.

Vielen Dank im vorraus.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Dateianhänge:
Anhang Nr. 1 (Typ: pdf) [nicht öffentlich]
        
Bezug
Zylinderschnitt Ebene 2 Winkel: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 Mo 15.06.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Zylinderschnitt Ebene 2 Winkel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:39 So 13.09.2015
Autor: Mobbi

Ergänzung
In den letzten Monaten hatte ich noch 1x diesen Fall und über die grafische Lösung konnte der Schnittwinkel und die Verrollung ermittelt werden.

Es handelt sich dabei um Betonrohre die schräg aus eine Böschung herausragen. (Regenwassersamelbecken)

Das Ergebnis war in der Praxis ganz gut zu gebrauchen, aber leider nicht 100% richtig. Die Abweichungen vom Schnitt wurden durch die anprofilierung der Böschung ausgeglichen. Dies möchte ich aber gern vermeiden.

Bezug
                
Bezug
Zylinderschnitt Ebene 2 Winkel: Antwort
Status: (Antwort) fertig Status 
Datum: 22:46 Mo 14.09.2015
Autor: HJKweseleit

[Dateianhang nicht öffentlich]

Wenn ich dich richtig verstanden habe, ist die Situation folgende:

Die Böschung hat die im linken Bild gezeigte Neigung 1:1,5.
Dann soll sie von vorn nach hinten in y-Richtung laufen, genau quer zur x-Achse.

Der Normalenvektor [mm] \vec{n} [/mm] der Böschungsebene steht genau senkrecht zur Fläche. Seine Länge ist beliebig, und ich wähle daher
[mm] \vec{n}=\vektor{1 \\ 0 \\ 1,5} [/mm] (geht nur in x- und z-Richtung).

Das mittlere Bild zeigt nun den Blick von oben aus der Luft. Rechts verläuft irgendwo der untere Rand der Böschung, das (rote) Rohr steht nicht senkrecht zu dieser Linie, sondern weicht davon schräg um 25° ab (ist das so richtig?). Das Rohr verläuft waagerecht.

Wenn das so stimmt, hat der Vektor  [mm] \vec{r} [/mm] in Rohrrichtung keine z-Komponente, sondern nur eine x- und y-Komponente. Setzt man in dem Dreieck die Rohrlänge auf 1, so erhält man
[mm] \vec{r}=\vektor{ cos( 25 °) \\ sin( 25 °) \\ 0} [/mm] (Länge ist hier 1, aber zunächst ebenfalls unwichtig).

Das 3. Bild zeigt nun (in anderer Position) die Böschungsebene mit dem normalenvektor [mm] \vec{n}, [/mm] auf den der Rohrvektor [mm] \vec{r} [/mm] stösst. Der Winkel zwischen beiden lässt sich durch das Skalarprodukt ermitteln:

[mm] \vec{r}*\vec{n}=|\vec{r}|*|\vec{n}|*cos(\alpha) [/mm]

[mm] \vec{r}*\vec{n}=cos( [/mm] 25 °)*1+sin( 25 °)*0+0*1,5 = cos( 25 °)
[mm] |\vec{r}|=\wurzel{(cos( 25 °))^2+(sin( 25 °))^2+0^2} [/mm] = 1
[mm] |\vec{n}|=\wurzel{1^2+0^2+1,5^2} [/mm] = [mm] \wurzel{3,25} [/mm]

Daraus ergibt sich nun:[math] cos(\alpha)=\bruch{cos(25°)}{\wurzel{3,25}} [/math] und damit [math]\alpha = 59,8 ° \approx 60 °.[/math]

Das bedeutet, dass die Rohrrichtung 60 ° von der Normalenrichtung abweicht. Bei 0 ° müsste man es genau quer abschneiden, jetzt muss man  60 ° davon abweichen.

[Dateianhang nicht öffentlich]


Nun legen wir das Rohr wie im unteren Bild links gezeigt so hin, dass das längste Stück im Schnitt unten liegt (!) und das Rohr nach rechts in eine neue x-Richtung zeigt. Dann weist der neue Normalenvektor [mm] \vec{N} [/mm] dieser Fläche um (ca.) 60 ° schräg nach oben, da wir ja mit 60 ° abgeschnitten haben. Er hat die Komponenten
[mm] \vec{N}=\vektor{ cos( 60 °) \\ 0 \\ sin(60)°}. [/mm] Seine Länge ist 1.

Nun rollen wir das Rohr so lange um den Winkel [mm] \Phi [/mm] auf uns zu, bis diese Fläche dieselbe Neigung hat wie die Böschung.

Zunächst ermitteln wir deren Wert:
Die Neigung der Böschung gegen die z-Achse ergibt sich wieder aus dem Skalarprodukt von [mm] \vec{n} [/mm] und [mm] \vec{z}=\vektor{0 \\ 0 \\ 1}: [/mm]

[mm] \vec{n}*\vec{z}=|\vec{n}|*|\vec{z}|*cos(Böschungsw.) [/mm] oder
1,5 = [mm] 1*\wurzel{3,25}*cos(Böschungsw.) [/mm]
[mm] cos(Böschungsw.)=\bruch{1,5 }{\wurzel{3,25}} [/mm]
Böschungsw.=33,69 ° (=90°-56,3°)

Schaut man nun in die Skizze links, so stellt man fest, dass sich beim Rollen die x-Komponente cos(60°) des Vektors [mm] \vec{N} [/mm] nicht ändert. Schaut man dann von rechts gegen das Rohr, sieht man (rechte Skizze) zunächst die z-Komponente sin(60 °) von [mm] \vec{N}, [/mm] die sich nun um [mm] \phi [/mm] dreht. Dadurch verkürzt sie sich auf [mm] sin(60°)*cos(\phi), [/mm] und es entsteht eine y-Komponente [mm] -sin(60°)*sin(\phi). [/mm]
Somit heißt nun der neue Vektor

[mm] \vec{N}=\vektor{cos(60°) \\ - sin(60°)sin(\phi) \\ sin(60°)cos(\phi)} [/mm] mit der Länge 1.

Die Drehung soll nun so weit gehen, dass [mm] \vec{N} [/mm] die Neigung des Böschungswinkels erhält:

[mm] \vec{N}*\vec{z}=|\vec{N}|*|\vec{z}|*cos(Böschungsw.) [/mm]
[mm] sin(60°)*cos(\phi)=1*1*\bruch{1,5 }{\wurzel{3,25}} [/mm]
[mm] cos(\phi)=\bruch{1,5 }{\wurzel{3,25}*sin(60°)} [/mm]

[mm] \phi\approx [/mm] 16,10 °. (Rollwinkel, Ausgangslage: Die Spitze liegt zunächst unten)

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Anhang Nr. 2 (Typ: JPG) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]