matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Zylinder berechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mathe Klassen 8-10" - Zylinder berechnung
Zylinder berechnung < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zylinder berechnung: überprüfung
Status: (Frage) beantwortet Status 
Datum: 19:01 So 21.09.2008
Autor: Asialiciousz

geg: Vz= 678cm³  Mz=452cm²
ges: r und k

1.  V=pi*r²*k
2.  M=2*pi*r*k
2.' K= [mm] \bruch{M}{2*pi*r} [/mm]

2.' in 1.:

V= pi*r²* [mm] \bruch{M}{2*pi*r} [/mm] = [mm] \bruch{r*M}{2} [/mm]

V = [mm] \bruch{r*M}{2} [/mm] || : r *V

r = [mm] \bruch{V*2}{M} [/mm]

r= 678*2 / 452
r= 3cm

(...etc)

ich weiß das es so richtig ist, aber ich versteh nicht ganz, wieso ich an der stelle :
V = [mm] \bruch{r*M}{2} [/mm] || : r *V

r = [mm] \bruch{V*2}{M} [/mm]

hier rauf kommen kann, denn es müsste doch dann lauten:

r = V*M/2

oder?
..aber dann stimmt das errgebnis nicht.

Bitte um eine Aufklärung, Danke! =)

        
Bezug
Zylinder berechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:12 So 21.09.2008
Autor: Somebody


> geg: Vz= 678cm³  Mz=452cm²
>  ges: r und k
>  
> 1.  V=pi*r²*k
>  2.  M=2*pi*r*k
>  2.' K= [mm]\bruch{M}{2*pi*r}[/mm]
>  
> 2.' in 1.:
>  
> V= pi*r²* [mm]\bruch{M}{2*pi*r}[/mm] = [mm]\bruch{r*M}{2}[/mm]
>  
> V = [mm]\bruch{r*M}{2}[/mm] || : r *V

[notok] Diese Operation [mm] $||\, [/mm] : [mm] (r\cdot [/mm] V)$ ist, für die Auflösung dieser Beziehung nach der gesuchten Grösse $r$, der reinste Müll.

>  
> r = [mm]\bruch{V*2}{M}[/mm]
>  
> r= 678*2 / 452
>  r= 3cm
>  
> (...etc)
>  
> ich weiß das es so richtig ist, aber ich versteh nicht
> ganz, wieso ich an der stelle :
> V = [mm]\bruch{r*M}{2}[/mm] || : r *V
>  
> r = [mm]\bruch{V*2}{M}[/mm]
>  
> hier rauf kommen kann, denn es müsste doch dann lauten:
>  
> r = V*M/2
>  
> oder?

Falls Du

> $V = [mm] \bruch{r*M}{2}\;\;\;\; [/mm] || : [mm] \red{(}r *V\red{)}$ [/mm]

meinst, ist Dein [mm] $r=V\cdot [/mm] M/2$ auch nicht richtig. Um $r$ auf der rechten Seite von [mm] $V=\bruch{r\cdot M}{2}$, [/mm] zu "isolieren", musst Du die Gleichung beidseitig durch [mm] $\frac{M}{2}$ [/mm] dividieren, oder, was auf das selbe herauskommt, beidseitig mit [mm] $\frac{2}{M}$ [/mm] multiplizieren. Ergibt

[mm]\begin{array}{lcll} V &=& \frac{r\cdot M}{2} &\big| \cdot \frac{2}{M}\\ V\cdot\frac{2}{M} &=& \frac{r\cdot M}{2}\cdot \frac{2}{M}\\ \frac{2V}{M} &=& r \end{array}[/mm]



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]