matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperZyklotomischer Körper
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gruppe, Ring, Körper" - Zyklotomischer Körper
Zyklotomischer Körper < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zyklotomischer Körper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:36 Mi 06.01.2010
Autor: algieba

Aufgabe
Zeigen oder widerlegen sie:
Jeder quadratische Zahlkörper ist Teilkörper eines zyklotomischen Körpers.

Ich nehme an, dass die Aussage stimmt, ist das richtig? Wie beweist man das dann?

Vielen Dank






        
Bezug
Zyklotomischer Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 16:24 Mi 06.01.2010
Autor: felixf

Hallo!

> Zeigen oder widerlegen sie:
>  Jeder quadratische Zahlkörper ist Teilkörper eines
> zyklotomischen Körpers.

>

>  Ich nehme an, dass die Aussage stimmt, ist das richtig?

Nein.

> Wie beweist man das dann?

Indem man ein Gegenbeispiel angibt und beweist, dass es eins ist.

Jeder zyklotomische Koerper ist eine abelsche Galoiserweiterung von [mm] $\IQ$. [/mm] Kannst du etwas ueber die Galoisgruppen der Untererweiterungen aussagen (falls sie Galoissch sind)?

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]