matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisZweig des Log. auf Gebiet G
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Komplexe Analysis" - Zweig des Log. auf Gebiet G
Zweig des Log. auf Gebiet G < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zweig des Log. auf Gebiet G: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:21 So 31.05.2015
Autor: bquadrat

Aufgabe
Sei [mm] G=\IC\backslash(1-i)\IR_{0}^{+} [/mm]

a) Bestimmen Sie den Zweig des Logarithmus auf G mit [mm] f(1)=2\pi*i [/mm]
b) Entwickeln sie f um [mm] z_{0}=2 [/mm] in eine Potenzreihe
c) Bestimmen Sie den Konvergenzradius der in b) ermittelten Potenzreihe
d) Bestimmen Sie das größte Gebiet um 2 auf dem f durch die Potenzreihe dargestellt wird.

Hallo,

ich verstehe nicht ganz wie ich hier ansetzen soll. Also f soll ein Zweig des Logarithmus auf G sein, d.h. also es muss für alle z aus G folgendes gelten: [mm] e^{f(z)}=z. [/mm] Weiterhin muss gelten [mm] f(1)=2\pi*i [/mm]
Kann mir bitte mal jemand auf die Sprünge helfen?

        
Bezug
Zweig des Log. auf Gebiet G: Antwort
Status: (Antwort) fertig Status 
Datum: 05:28 Mo 01.06.2015
Autor: fred97


> Sei [mm]G=\IC\backslash(1-i)\IR_{0}^{+}[/mm]
>  
> a) Bestimmen Sie den Zweig des Logarithmus auf G mit
> [mm]f(1)=2\pi*i[/mm]
>  b) Entwickeln sie f um [mm]z_{0}=2[/mm] in eine Potenzreihe
>  c) Bestimmen Sie den Konvergenzradius der in b)
> ermittelten Potenzreihe
>  d) Bestimmen Sie das größte Gebiet um 2 auf dem f durch
> die Potenzreihe dargestellt wird.
>  Hallo,
>  
> ich verstehe nicht ganz wie ich hier ansetzen soll. Also f
> soll ein Zweig des Logarithmus auf G sein, d.h. also es
> muss für alle z aus G folgendes gelten: [mm]e^{f(z)}=z.[/mm]
> Weiterhin muss gelten [mm]f(1)=2\pi*i[/mm]
>  Kann mir bitte mal jemand auf die Sprünge helfen?


Ist z [mm] \in [/mm] G , wie sehen zunächst alle Logarithmen von z aus ? Wenn Du das hast,
so sollte es nicht schwierig sein, obiges f dingfest zu machen.

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]