matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikZwei u. Würfel 2x Pasch
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Stochastik" - Zwei u. Würfel 2x Pasch
Zwei u. Würfel 2x Pasch < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zwei u. Würfel 2x Pasch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:48 Do 05.12.2013
Autor: ChopSuey

Aufgabe
Zwei unterscheidbare Würfel werden n-mal hintereinander jeweils gleichzeitig geworfen. (...) Berechnen Sie die Wahrscheinlichkeit des folgenden Ereignisses:

A = "genau zweimal sind die beiden gewürfelten Zahlen gleich"

Hallo,

bei obiger Aufgabe hab' ich eine Frage zur Lösung bzw generell zur Wahrscheinlichkeit des Ereignisses.

Der Ergebnisraum ist $ [mm] \Omega [/mm] = [mm] \{1,...,6\}^{2n} [/mm] $, als $ [mm] \sigma-$Algebra [/mm] hab ich die Potenzmenge $ [mm] P(\Omega) [/mm] $ gewählt. Und das W-Maß ist die diskrete Gleichverteilung.

Nun ist $ [mm] |\Omega| [/mm] = [mm] 6^{2n} [/mm] $

Bei der Mächtigkeit der Menge $ A $ die das Ereignis $ A $ beschreibt habe ich allerdings Schwierigkeiten.

Was ich bisher weiß:  $ A $ besteht aus den Elementen $ [mm] \omega [/mm] = [mm] (\omega_{ij}) \in \Omega [/mm] $ mit $ [mm] \omega_{1j} [/mm] = [mm] \omega_{2j} [/mm] $ für zwei feste $ j' [mm] \in \{1,...,n\} [/mm] $ wobei $ i [mm] \in \{1,2\} [/mm] $ die Würfel und $ j [mm] \in \{1,..,n\} [/mm] $ den $ j-$ten Wurf beschreibt. Für alle anderen Würfe $ j [mm] \in \{1,...,n\} \setminus [/mm] J' = [mm] \{j'_{1}, j'_{2}\} [/mm] $ muss also gelten $ [mm] \omega_{1j} \not= \omega_{2j} [/mm] $

Und jetzt weiß ich nicht so recht, wie ich am besten mit diesen Informationen die Mächtigkeit ermitteln soll bzw kann. Jemand Tips für mich?

Freue mich über jede Hilfe!
Viele Grüße,
ChopSuey

        
Bezug
Zwei u. Würfel 2x Pasch: Binomialverteilung
Status: (Antwort) fertig Status 
Datum: 19:59 Do 05.12.2013
Autor: Diophant

Hallo,

meiner Ansicht nach ist das Stichwort hier Binomialverteilung. Wie du das dann hier notieren sollst, da kann ich dir nicht wirklich weiterhelfen.

Ich hätte allerdings den Ergebnisraum dazu aus Paaren aufgebaut.

Ich stelle malö auf teilweise beantwortet.

Grüße & schönen Abend, Diophant 

Bezug
        
Bezug
Zwei u. Würfel 2x Pasch: Antwort
Status: (Antwort) fertig Status 
Datum: 20:57 Do 05.12.2013
Autor: Al-Chwarizmi


> Zwei unterscheidbare Würfel werden n-mal hintereinander
> jeweils gleichzeitig geworfen. (...) Berechnen Sie die
> Wahrscheinlichkeit des folgenden Ereignisses:
>  
> A = "genau zweimal sind die beiden gewürfelten Zahlen
> gleich"
>  Hallo,
>  
> bei obiger Aufgabe hab' ich eine Frage zur Lösung bzw
> generell zur Wahrscheinlichkeit des Ereignisses.
>  
> Der Ergebnisraum ist [mm]\Omega = \{1,...,6\}^{2n} [/mm], als
> [mm]\sigma-[/mm]Algebra hab ich die Potenzmenge [mm]P(\Omega)[/mm] gewählt.
> Und das W-Maß ist die diskrete Gleichverteilung.
>  
> Nun ist [mm]|\Omega| = 6^{2n}[/mm]
>  
> Bei der Mächtigkeit der Menge [mm]A[/mm] die das Ereignis [mm]A[/mm]
> beschreibt habe ich allerdings Schwierigkeiten.
>  
> Was ich bisher weiß:  [mm]A[/mm] besteht aus den Elementen [mm]\omega = (\omega_{ij}) \in \Omega[/mm]
> mit [mm]\omega_{1j} = \omega_{2j}[/mm] für zwei feste [mm]j' \in \{1,...,n\}[/mm]
> wobei [mm]i \in \{1,2\}[/mm] die Würfel und [mm]j \in \{1,..,n\}[/mm] den
> [mm]j-[/mm]ten Wurf beschreibt. Für alle anderen Würfe [mm]j \in \{1,...,n\} \setminus J' = \{j'_{1}, j'_{2}\}[/mm]
> muss also gelten [mm]\omega_{1j} \not= \omega_{2j}[/mm]
>
> Und jetzt weiß ich nicht so recht, wie ich am besten mit
> diesen Informationen die Mächtigkeit ermitteln soll bzw
> kann. Jemand Tips für mich?
>  
> Freue mich über jede Hilfe!


Hallo ChopSuey,

ich weiß zwar nicht mit Sicherheit, was genau du mit
"zwei unterscheidbaren Würfeln" meinst, nehme aber
mal der Einfachheit halber an, dass es sich um zwei
"normale" oder "faire" Spielwürfel handelt, deren Wurf-
ergebnisse gleichverteilt in [mm] $\{1,2,3,4,5,6\}$ [/mm] und voneinander
unabhängig sind.
Man kann sich dann leicht überlegen, dass die gesuchte
Wahrscheinlichkeit identisch sein muss mit der Wahr-
scheinlichkeit, dass man in n Würfen mit einem einzigen
Würfel exakt 2 mal eine 4 würfelt.
(oder irgendeine andere der möglichen Augenzahlen)

LG ,   Al-Chw.
würfelt

Bezug
        
Bezug
Zwei u. Würfel 2x Pasch: Antwort
Status: (Antwort) fertig Status 
Datum: 21:07 Do 05.12.2013
Autor: luis52

Moin,

schreibe [mm] $\Omega={(x_1,\dots,x_n)\mid x_i=0 \text{ (kein Pasch) oder } x_i=1 \text{ (Pasch)}\}$. [/mm] Setze [mm] $P(\{\omega\})=\left(\dfrac{1}{6}\right)^{\sum x_i}\left(\dfrac{5}{6}\right)^{n-\sum x_i}$. [/mm] Die Loesung der Aufgabe laeuft dann auf Diophants Ansatz hinaus.
                

Bezug
                
Bezug
Zwei u. Würfel 2x Pasch: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 06:08 Mo 09.12.2013
Autor: ChopSuey

Hallo Leute,

vielen Dank für Eure Hilfe! Ich denke, dass ich nun dahinter gestiegen bin. Ist schon eine ganze Weile her, dass ich Stochastik hatte.

Evtl. meld ich mich erneut bei Rückfragen.

Viele Grüße,
ChopSuey

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]