Zur Kettenregel < Analysis < Hochschule < Mathe < Vorhilfe
|
Hallo,
ich habe eine Frage zur Kettenregel.
Gegeben ist [mm] f(x,y)=g(x^{2}-y^{2}, e^{xy}) [/mm] und gesucht ist [mm] \bruch{\partial f}{\partial x} [/mm] und [mm] \bruch{\partial f}{\partial y}
[/mm]
Während mir die Kettenregel selbst schon klar ist, verwirrt mich die größere Anzahl an Funktionen und Parametern wohl etwas.
Ist es richtig, wenn ich das [mm] g(x^{2}-y^{2}, e^{xy}) [/mm] als Fkt. g(u,v) betrachte und dann daraus
[mm] \bruch{\partial f}{\partial x}=\bruch{\partial g}{\partial u}*\bruch{\partial u}{\partial x}+\bruch{\partial g}{\partial v}*\bruch{\partial v}{\partial x} [/mm] erhalte?
In diesem allgemeinen Fall ist dann ja z.B. [mm] \bruch{\partial g}{\partial u} [/mm] nicht explizit anzugeben, oder?
Und als zweite Frage dazu:
Wenn ich z.B. habe: u=x*y*z, wobei diese x,y,z jeweils Funktionen x(t),y(t) und z(t) sind und ich [mm] \bruch{du}{dt} [/mm] angeben soll;
kann ich dann einfach die produktregel anwenden und sagen
[mm] \bruch{du}{dt}=y*z*\bruch{dx}{dt}+x*z*\bruch{dy}{dt}+x*y*\bruch{dz}{dt} [/mm] ?
Kann sein, dass ich hier nach Trivialitäten frage, aber bin mir da wirklich derb unsicher. Habt vielen Dank.
|
|
|
|
Hallo,
> Während mir die Kettenregel selbst schon klar ist, verwirrt
> mich die größere Anzahl an Funktionen und Parametern wohl
> etwas.
> Ist es richtig, wenn ich das [mm]g(x^{2}-y^{2}, e^{xy})[/mm] als
> Fkt. g(u,v) betrachte und dann daraus
> [mm]\bruch{\partial f}{\partial x}=\bruch{\partial g}{\partial u}*\bruch{\partial u}{\partial x}+\bruch{\partial g}{\partial v}*\bruch{\partial v}{\partial x}[/mm]
> erhalte?
Das ist richtig.
> In diesem allgemeinen Fall ist dann ja z.B.
> [mm]\bruch{\partial g}{\partial u}[/mm] nicht explizit anzugeben,
> oder?
Ja.
>
> Und als zweite Frage dazu:
> Wenn ich z.B. habe: u=x*y*z, wobei diese x,y,z jeweils
> Funktionen x(t),y(t) und z(t) sind und ich [mm]\bruch{du}{dt}[/mm]
> angeben soll;
> kann ich dann einfach die produktregel anwenden und sagen
Hier gilt:
[mm]\frac{{\delta u}}{{\delta t}}\; = \;\frac{{\delta u}}{{\delta x}}\;\frac{{\delta x}}{{\delta t}}\; + \;\frac{{\delta u}}{{\delta y}}\;\frac{{\delta y}}{{\delta t}}\; + \;\frac{{\delta u}}{{\delta z}}\;\frac{{\delta z}}{{\delta t}}[/mm]
>
> [mm]\bruch{du}{dt}=y*z*\bruch{dx}{dt}+x*z*\bruch{dy}{dt}+x*y*\bruch{dz}{dt}[/mm]
> ?
Auch das ist richtig.
Gruß
MathePower
|
|
|
|