matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDiskrete OptimierungZuordnungsproblem bei m>n
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Diskrete Optimierung" - Zuordnungsproblem bei m>n
Zuordnungsproblem bei m>n < Optimierung < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Optimierung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zuordnungsproblem bei m>n: Modellrestriktionen
Status: (Frage) überfällig Status 
Datum: 14:59 Di 27.11.2007
Autor: JanaP

Hallo,

ich setze mich schon lange mit einem Zuordnungsproblem auseinnader. Ich glaube mein Ansatz ist irgendwie falsch. Es sollen eine Menge von Menschen zu angemeldeten Seminarkursen zugeordnet werden.  Es sind die Stadt, die Firma und die Abteilungen gegeben. Die Nachfrage ist größer als das Angebot, also können nicht alle teilnehmen. Die möglichen Termine(mehrere pro Kurs) sind gegeben. Noch habe ich keine konkrete Beurteilungskriterien. Ich habe angenommen, dass es welche gibt [mm] -$c_{ak}$. [/mm] Mich interessieren zuerst die Bedingungen: mindestens jede Stadt soll berücksichtigt werden, d.h. mindestens eine Firma mit einer Abteilung nimmt teil. Jede Gruppe meldet sich für 1-4 Kurse mit Angabe des Termins und einen Alternativtermin an. Jede Gruppe darf nur einen Kurs  möglichst zu ihrem ersten Termin besuchen, die Anzahl der teilnehmenden Gruppen pro Kurs darf die max. Kapazität nicht überschreiten. Ich habe versucht die Informationen so aufzufassen:

K Menge der Kurse
[mm] $C_{k}$= [/mm] max. Kapazität des Kurses k  
S Anzahl der Städte
F Anzahl der Firmen
A Anzahl der Abteilungen gesamt
[mm] $A_{f}$ [/mm] Anzahl mit wie viel Abteilungen Firma f angemeldet
[mm] Z^{f}_{a} [/mm]  Anzahl der Leute je Abteilung a der Firma f
  [mm] X^{f} [/mm] Menge aller Abteilungen der angemeldeten Firma f
[mm] $x^f_{ak}$=\begin{cases} 0, & \mbox{ sonst} \\ 1, & \mbox{ Wenn Firma f mit der Abteilung a dem Kurs k zugeordnet} \end{cases} [/mm]
[mm] $e_{ka}$=\begin{cases} 0, & \mbox{ sonst} \\ 1, & \mbox{ Wenn Kurs k fuer Abteilung a geeignet} \end{cases} [/mm]
[mm] $g_{fs}$ =\begin{cases} 0, & \mbox{ sonst} \\ 1, & \mbox{ Wenn Firma f aus der Stadt s} \end{cases} [/mm]
[mm] $w_{ak}$ =\begin{cases} 0, & \mbox{ sonst} \\ 1, & \mbox{ Wenn Abteilung a dem Kurs k zum Ersttermin zugeordnet} \end{cases} [/mm]

[mm] $w^f_{ak}$ [/mm] = [mm] ($x^f_{ak}$.$w_{ak}$.$e_{ka}$)= \begin{cases} 0, & \mbox{ sonst} \\ 1, & \mbox{Wenn Abteilung a der Firma f dem geiegneten Kurs k zu einem Ersttermin zugeordnet} \end{cases} [/mm]


maximize
[mm] \begin{displaymath} \sum_{k} \sum_{f} \sum_{a} w^f_{ak} . c_{ak} \end{displaymath} [/mm]
Subject to:
[mm] \begin{displaymath} g_{fs} .(\sum_{a} \sum_{k} w^f_{ak }) >= 1 \quad \forall s \in S,\forall f \in F \end{displaymath} [/mm]
[mm] \begin{displaymath} \sum_{f} \sum_{a} w^f_{ak }.Z^{f}_{a} <= C_{k} \quad \forall k \in K \end{displaymath} [/mm]
[mm] \begin{displaymath} \sum_{k} w^f_{ak } <= 1 \quad \forall a \in A, \forall f \in F \end{displaymath} [/mm]

Vielleicht kann mir jemand bei dem Aufstellen des ganzzahligen Programms helfen.
Geht es mit weniger binomialen Variablen? Bei mir fehlt auch die genaue Modellierung der Erst-und Zweit-Termine.

Vielen Dank im Voraus.

Gruß Jana


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Zuordnungsproblem bei m>n: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:42 Fr 30.11.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Optimierung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]