matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikZufallsvektor unabhängigkeit
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Stochastik" - Zufallsvektor unabhängigkeit
Zufallsvektor unabhängigkeit < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zufallsvektor unabhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:34 Sa 30.11.2013
Autor: Milaa

Aufgabe
Sei X = [mm] (X_1,...,X_n) [/mm] ein beliebiger Zufallsvektor. Jeder Teilvektor [mm] (X_i_1,..,X_i_m) [/mm] mit [mm] {i_1,..,i_m}\subseteq [/mm] {1,...,n} und 2 [mm] \le [/mm] m [mm] \le [/mm] n besteht aus unabhängigen Komponenten, falls dies für den Gesamtvektor X gilt.

Hallo,

Die Behauptung ist zu zeigen. Ich weis das mein ZVektor aus unabhängigen Vektoren besteht d.h. [mm] F_(_X_1_,_._._,_X_n_)(x_1,..,x_n)= F_X_1(x_1)...F_X_n(x_n) [/mm] gilt
d.h. [mm] P(X_1 \le x_1,...,X_n \le x_n) [/mm] = [mm] P(X_1 \le x_1)...P(X_n \le x_n) [/mm]
-> [mm] P(X_1 \in B_1,...,X_n \in B_n) [/mm] = [mm] P(X_1 \in B_1)...P(X_n \in B_n) [/mm] für alle [mm] B_1,...,B_n \in B(\IR) [/mm]

Und ich müsste mit den Angaben auf diesen Ausdruck kommen
[mm] F_(_X_i_1_,_._._,_X_i_m_)(x_i_1,..,x_i_m_)= F_X_i_1(x_i_1)...F_X_i_m(x_i_m) [/mm]

Nur gelingt mir dies nicht und würde mich auf jede Hilfe freuen.

Liebe Grüße
Milaa

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Zufallsvektor unabhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 18:48 Sa 30.11.2013
Autor: luis52

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Moin,

[willkommenmr]

$F_{X_{i_1},\dots,X_{i_m}}(x_{i_1},\dots,x_{i_m})=F_{X_{1},\dots,X_{n}}(z_1,\dots,z_n})$ mit $z_j=x_{i_k}$ fuer $i=j_k$ und $z_j=\infty$ sonst...

Bezug
                
Bezug
Zufallsvektor unabhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:24 Sa 30.11.2013
Autor: Milaa

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hey Luis52,

danke erst mal :)

So leider leuchtet mir das noch nicht wirklich ein ich verstehe z.B. nicht wieso man jetzt einfach sagen kann $ F_{X_{i_1},\dots,X_{i_m}}(x_{i_1},\dots,x_{i_m})=F_{X_{1},\dots,X_{n}}(z_1,\dots,z_n}) $
Das würde ja bedeuten dass P(X_i_1 \le x_i_1,...,X_i_m \le x_i_m)= P(X_1 \le z_1,..., X_n \le z_n) und wieso für i=j_k und nicht für j=i_k sonst bedeutet das ja z_j = x_j_k_k

Liebe Grüße
Milaa

Bezug
                        
Bezug
Zufallsvektor unabhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 20:36 Sa 30.11.2013
Autor: luis52


> und wieso für [mm]i=j_k[/mm] und nicht für [mm]j=i_k[/mm] sonst bedeutet
> das ja [mm]z_j[/mm] = [mm]x_j_k_k[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


>  
>

Es muss natuerlich heissen


$ F_{X_{i_1},\dots,X_{i_m}}(x_{i_1},\dots,x_{i_m})=F_{X_{1},\dots,X_{n}}(z_1,\dots,z_n}) $ mit $ z_j=x_{i_k} $ fuer $ j=i_k $ und $ z_j=\infty $ sonst...


Bezug
                                
Bezug
Zufallsvektor unabhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:43 Sa 30.11.2013
Autor: Milaa

Könntest du mir eventuell auch erklären wie du auf diese Gleichheit kommst also den Sinn dahinter (und wieso du $ [mm] z_j=\infty [/mm] $ wählst) ich glaube dann wird einiges klarer :S

Vielen Dank

Bezug
                                        
Bezug
Zufallsvektor unabhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 23:30 Sa 30.11.2013
Autor: luis52

Schau mal []hier, Folie 4. Oder google mal "Randverteilungsfunktion".

Bezug
                                                
Bezug
Zufallsvektor unabhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:41 So 01.12.2013
Autor: Milaa

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Ich glaube ich habe verstanden was du meinst.
Und wenn ich mich nicht irre gilt jetzt einfach $ F_{X_{i_1},\dots,X_{i_m}}(x_{i_1},\dots,x_{i_m})=F_{X_{1},\dots,X_{n}}(z_1,\dots,z_n}) $ = P(X_1 \le z_1,...,X_n \le z_n) = P(X_1 \le z_1) ... P(X_n \le z_n) = P(X_i_1 \le x_i_1) ... P(X_i_m \le x_i_m)

Liebe Grüße
Milaa

Bezug
                                                        
Bezug
Zufallsvektor unabhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 09:40 So 01.12.2013
Autor: luis52


> Ich glaube ich habe verstanden was du meinst.
>  Und wenn ich mich nicht irre gilt jetzt einfach
> [mm]F_{X_{i_1},\dots,X_{i_m}}(x_{i_1},\dots,x_{i_m})=F_{X_{1},\dots,X_{n}}(z_1,\dots,z_n})[/mm]
> = [mm]P(X_1 \le z_1,...,X_n \le z_n)[/mm] = [mm]P(X_1 \le z_1)[/mm] ... [mm]P(X_n \le z_n)[/mm]
> = [mm]P(X_i_1 \le x_i_1)[/mm] ... [mm]P(X_i_m \le x_i_m)[/mm]


[ok]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]