matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikZufallsvariablen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Stochastik" - Zufallsvariablen
Zufallsvariablen < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zufallsvariablen: Beweisende unklar
Status: (Frage) beantwortet Status 
Datum: 11:39 Mi 04.04.2012
Autor: schachuzipus

Aufgabe
Seinen [mm]X_1,X_2,\ldots[/mm] unabhängig mit [mm]\sum\limits_{n\ge 1}\opreatorname{Var}(X_n) \ < \ \infty[/mm].

Dann konvergiert [mm]\sum\limits_{i=1}^{n}(X_i-EX_i)[/mm] f.s. gegen eine ZV [mm]X[/mm]



Hallo zusammen,

meine Frage bezieht sich auf das Ende des Beweises, den ich am besten mal eintippe:

Bew.: Sei o.E. [mm]EX_i=0[/mm].

Nach irgendeiner Übung (die ich nicht habe) ist [mm]S_n=\sum\limits_{i=1}^{n}X_i[/mm] Cauchyfolge f.s. gdw. [mm]P\left(\bigcup\limits_{j,k\ge m}(|S_j-S_k|>\varepsilon)\right)\longrightarrow 0[/mm] für [mm]m\to\infty \ \ \ (\star)[/mm]

Es gilt [mm]P\left(\bigcup\limits_{k=1}^{\infty}(|S_{k+m}-S_m|>\varepsilon)\right) \ = \ \lim\limits_{n\to\infty}P\left(\bigcup\limits_{k=1}^{n}(|S_{k+m}-S_m|>\varepsilon)\right) \ = \ \lim\limits_{n\to\infty}P(\max\limits_{1\le k\le n}|S_{k+m}-S_m|>\varepsilon)[/mm]

[mm]\le \ \lim\limits_{n\to\infty}\frac{\operatorname{Var}(S_{m+n}-S_m)}{\varepsilon^2} \ = \ \lim\limits_{n\to\infty}\frac{1}{\varepsilon^2}\sum\limits_{j=m+1}^{m+n}\operatorname{Var}(X_j)=\frac{1}{\varepsilon^2}\sum\limits_{j=m+1}^{\infty}\operatorname{Var}(X_j) \ \longrightarrow 0[/mm] für [mm]m\to\infty[/mm]

Bis hierhin ist mir das klar.

Nun: "Das reicht wegen [mm]|S_j-S_k| \ \le \ |S_j-S_m| \ + \ |S_k-S_m|[/mm]"

Wieso reicht das?

Er will doch zeigen, dass [mm]\sum\limits_{i=1}^{n}X_i[/mm] Cauchyfolge ist, wie kommt er denn mit dem "Das reicht" auf die obige Bedingung [mm](\star) \ \ P\left(\bigcup\limits_{j,k\ge m}(|S_j-S_k|>\varepsilon)\right)\longrightarrow 0[/mm] für [mm]m\to\infty[/mm] ?

Ich bin für jede Hilfe dankbar!

Gruß

schachuzipus



        
Bezug
Zufallsvariablen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:25 Mi 04.04.2012
Autor: tobit09

Hallo schachuzipus,

nach einigem Überlegen verstehe ich den/die Dozenten/in folgendermaßen:


Gezeigt ist:

     [mm] $P(A_m)\longrightarrow [/mm] 0$ für [mm] $m\to\infty$ [/mm]

mit

     [mm] $A_m:=\bigcup_{i=1}^\infty\underbrace{(|S_{i+m}-S_m|>\bruch\varepsilon2)}_{=:A_{mi}}$. [/mm]

Zu zeigen ist

     [mm] $P(B_m)\longrightarrow [/mm] 0$ für [mm] $m\to\infty$ [/mm]

mit

     [mm] $B_m:=\bigcup_{j,k\ge m}^\infty\underbrace{(|S_j-S_k|>\varepsilon)}_{=:B_{jk}}$. [/mm]


Daher genügt es, [mm] $B_m\subseteq A_m$ [/mm] für alle [mm] $m\in\IN$ [/mm] zu zeigen.


Sei dazu [mm] $\omega\in B_m$, [/mm] etwa [mm] $\omega\in B_{jk}$ [/mm] für [mm] $j,k\ge [/mm] m$. Wegen

     [mm] $\varepsilon<|S_j-S_k|(\omega) [/mm] \ [mm] \le [/mm] \ [mm] |S_j-S_m|(\omega) [/mm] \ + \ [mm] |S_k-S_m|(\omega)$ [/mm]

gilt dann

     [mm] $|S_j-S_m|(\omega)>\bruch\varepsilon2$ [/mm] oder [mm] $|S_k-S_m|(\omega)>\bruch\varepsilon2$. [/mm]

Etwa ersteres (letzteres behandelt man analog). Mit [mm] $i:=j-m\ge0$ [/mm] (auch [mm] $i\not=0$) [/mm] gilt dann [mm] $\omega\in A_{mi}\subseteq A_m.$ [/mm]


Viele Grüße
Tobias

Bezug
                
Bezug
Zufallsvariablen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:27 Do 05.04.2012
Autor: schachuzipus

Hallo Tobias,

erstmal [mm] $10^3$ [/mm] Dank, das sieht sehr gut aus, ich werde es mir aber erst morgen in aller Ruhe zu Gemüte führen können.

Bis demnächst - es kommen sicher noch so einige Fragen ...

Gruß und schöne Ostertage

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]