matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieZufallsvariable und W. raum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Wahrscheinlichkeitstheorie" - Zufallsvariable und W. raum
Zufallsvariable und W. raum < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zufallsvariable und W. raum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:13 Mi 16.05.2007
Autor: wulfen

Aufgabe
Es wird gewürfelt bis zum ersten Mal eine "Sechs" erscheint.

(a) Definieren sie einen passenden Wahrscheinlichkeitsraum.

(b) Definieren sie eine Zufallsvariable X auf diesem Wahrscheinlichkeitsraum, die angibt, wie lange es dauert bis die "Sechs" erschienen ist.

(c) Bestimmen sie die Verteilung von X.

Mein Problem ist schon die Definition des Wahrscheinlichkeitsraumes, da der ja nicht endlich ist, oder? Rein theoretisch kann es ja passieren, dass die "Sechs" niemals kommt. Also kann ich als Ereignismenge F auch nicht die Potenzmenge von Omega nehmen. Und somit weiß ich auch nicht, wie ich ein Wahrscheinlichkeitsmaß definieren soll. Die Teile (b) und (c) bekomm ich dann ohne den Wahrscheinlichkeitsraum auch nicht hin. Steh mir da wohl selbst etwas im Weg. Kann mir jemand helfen?

        
Bezug
Zufallsvariable und W. raum: Antwort
Status: (Antwort) fertig Status 
Datum: 15:37 Mi 16.05.2007
Autor: luis52

Moin Tobias,

(a) Definiere den Ergebnismenge so: [mm] $\Omega=\{\omega_1,\omega_2,\omega_3,\dots\}$ [/mm] mit
[mm] $\omega_i=(0,0,\dots,0,1)$ [/mm] ($i-1$ Nullen, am Schluss eine Eins). [mm] $\omega_i$ [/mm] charakterisiert das Ergebnis:  Vor dem $i$-ten Wurf keine Sechs, im $i$-ten Wurf eine Sechs. Ein geeignetes Wahrscheinlichkeitsmass ist dann durch [mm] $P(\{\omega_i\})=(5/6)^{i-1}(1/6)$ [/mm] gegeben. Waehle schliesslich die Potenzmenge von [mm] $\Omega$ [/mm] als [mm] $\sigma$-Algebra. [/mm]

(b) [mm] $X:\Omega\to\IR$ [/mm] mit [mm] $X(\omega_i)=i-1$. [/mm] So ist [mm] $X(\omega_1)=0$, [/mm] da im ersten Versuch die Sechs erscheint usw. (c) Mit der Festlegung unter (a) ist [mm] $P(X=x)=(5/6)^x(1/6)$ [/mm]  fuer [mm] $x=0,1,2,\dots$ [/mm] (geometrische Verteilung)

lg

Luis                

Bezug
                
Bezug
Zufallsvariable und W. raum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:55 Fr 18.05.2007
Autor: wulfen

Alles klar, dass liest sich so weit sehr gut. Ich werde mir das nochmal richtig zu Gemüte führen, damit ich das auch verstehe;-) Vielen Dank.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]