matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastik-SonstigesZufallsgrößen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Stochastik-Sonstiges" - Zufallsgrößen
Zufallsgrößen < Sonstiges < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zufallsgrößen: Tipp + Korrektur
Status: (Frage) beantwortet Status 
Datum: 19:27 So 11.10.2009
Autor: DjHighlife

Aufgabe
Eine Urne enthält 100 Lose, von denen das Los mit der Nummer 1 eine Auszahlung von 100€ bringt. Alle anderen Lose sind Nieten.
a) Berechnen sie den Erwartungswert für die Auszahlung [mm] X_1, [/mm] wenn jemand als erster ein Los zieht.
b) Jemand zieht die ersten beiden Lose hintereinander, wobei das zuerst gezogene Los ungeöffnet bleibt. Begründen sie, warum die W'keit, beim 2. Los zu gewinnen, ebenfalls [mm] \bruch{1}{100} [/mm] ist.
c) Berechnen Sie den Erwartungswert für die Auszahlung [mm] X_1 [/mm] + [mm] X_2 [/mm] der beiden Lose.
d) Konstruieren sie die gemeinsame Wahrscheinlichkeitstabelle für [mm] X_1 [/mm] und [mm] X_2 [/mm] und berechnen sie hierraus die Verteilung con [mm] X_1 [/mm] + [mm] X_2 [/mm] sowie [mm] E(X_1+X_2). [/mm] Vergleichen Sie das Ergebnis mit c).
e) Jemand zieht gleich 100 Lose. Vergleichen sie den Erwartungswert mit der Auszahlung.

Hi,

a) [mm] E(X_1)=100*\bruch{1}{100}+0*\bruch{99}{100}=1 [/mm]

b) Sie bleibt gleich, da man das bereits gezogene Los nicht kennt. Es kann sich darunter eine Niete oder auch der 100€ Gewinn verbergen.

c) [mm] E(X_1+X_2)=E(X_1)+E(X_2)=1+100*\bruch{1}{99}+0*\bruch{98}{99}=\bruch{199}{99} [/mm]

d) Hier kann ich leider gar nichts mit anfangen. Ein kleiner Tipp wäre nett :)

e) Hier weis ich auch nicht wirklich weiter.
Die W'keit bei 100 Zügen den Gewinn zu bekommen ist ja 100%

Somit müsste es ja:

E(X)=100*1+0*0=100

sein, oder?!

mfg, Michael

        
Bezug
Zufallsgrößen: Seltsam: 1+1≠2 ?
Status: (Antwort) fertig Status 
Datum: 11:29 Mo 12.10.2009
Autor: Al-Chwarizmi

Hallo Michael,


> Eine Urne enthält 100 Lose, von denen das Los mit der
> Nummer 1 eine Auszahlung von 100€ bringt. Alle anderen
> Lose sind Nieten.
>  a) Berechnen sie den Erwartungswert für die Auszahlung
> [mm]X_1,[/mm] wenn jemand als erster ein Los zieht.
>  b) Jemand zieht die ersten beiden Lose hintereinander,
> wobei das zuerst gezogene Los ungeöffnet bleibt.
> Begründen sie, warum die W'keit, beim 2. Los zu gewinnen,
> ebenfalls [mm]\bruch{1}{100}[/mm] ist.
>  c) Berechnen Sie den Erwartungswert für die Auszahlung
> [mm]X_1[/mm] + [mm]X_2[/mm] der beiden Lose.
>  d) Konstruieren sie die gemeinsame
> Wahrscheinlichkeitstabelle für [mm]X_1[/mm] und [mm]X_2[/mm] und berechnen
> sie hierraus die Verteilung von [mm]X_1[/mm] + [mm]X_2[/mm] sowie [mm]E(X_1+X_2).[/mm]
> Vergleichen Sie das Ergebnis mit c).
>  e) Jemand zieht gleich 100 Lose. Vergleichen sie den
> Erwartungswert mit der Auszahlung.
>  Hi,
>  
> a) [mm]E(X_1)=100*\bruch{1}{100}+0*\bruch{99}{100}=1[/mm]     [ok]
>  
> b) Sie bleibt gleich, da man das bereits gezogene Los nicht
> kennt. Es kann sich darunter eine Niete oder auch der
> 100€ Gewinn verbergen.     [ok]
>  
> c)
> [mm]E(X_1+X_2)=E(X_1)+E(X_2)=1+100*\bruch{1}{99}+0*\bruch{98}{99}=\bruch{199}{99}[/mm]     [verwirrt]

     weshalb soll hier nicht 1+1=2 gelten ?
  

> d) Hier kann ich leider gar nichts mit anfangen. Ein
> kleiner Tipp wäre nett :)
>  
> e) Hier weiss ich auch nicht wirklich weiter.
>  Die W'keit bei 100 Zügen den Gewinn zu bekommen ist ja 100%
>  
> Somit müsste es ja:
>  
> E(X)=100*1+0*0=100    sein, oder?!

Das sehe ich auch so.
  

> mfg, Michael

Bezug
        
Bezug
Zufallsgrößen: d)
Status: (Antwort) fertig Status 
Datum: 12:55 Mo 12.10.2009
Autor: Al-Chwarizmi


> Eine Urne enthält 100 Lose, von denen das Los mit der
> Nummer 1 eine Auszahlung von 100€ bringt. Alle anderen
> Lose sind Nieten.

>  d) Konstruieren sie die gemeinsame
>     Wahrscheinlichkeitstabelle für [mm] X_1 [/mm] und [mm] X_2 [/mm] und berechnen
>     sie hieraus die Verteilung von [mm] X_1+X_2 [/mm] sowie [mm] E(X_1+X_2). [/mm]
>     Vergleichen Sie das Ergebnis mit c).


          $\ [mm] P(\ [/mm] =\ <0€,0€>)\ =\ [mm] \,0.98$ [/mm]           -----> [mm] X_1+X_2=0€ [/mm]

          $\ [mm] P(\ [/mm] =\ <100€,0€>)\ =\ 0.01$          -----> [mm] X_1+X_2=100€ [/mm]

          $\ [mm] P(\ [/mm] =\ <0€,100€>)\ =\ 0.01$          -----> [mm] X_1+X_2=100€ [/mm]

          $\ [mm] P(\ [/mm] =\ <100€,100€>)\ =\ 0$          -----> [mm] X_1+X_2=200€ [/mm]


     $\ [mm] E(X_1+X_2)\ [/mm] =\ 0.98*0€+0.01*100€+0.01*100€+0*200€\ =\ 2€$


Gruß     Al








Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]