matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastikZufallsexperimente m. Oktaeder
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Stochastik" - Zufallsexperimente m. Oktaeder
Zufallsexperimente m. Oktaeder < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zufallsexperimente m. Oktaeder: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:42 Sa 14.04.2007
Autor: xanaimb

Aufgabe
Gegeben sind fünf regelmäßige Oktaeder, für deren acht Begrenzungsflächen die Laplace-Bedingung gilt. Drei dieser Oktaeder tragen auf ihren Begrenzungsflächen die Augenzahlen 1,1,2,2,2,2,3,3 (Typ I); zwei der Oktaeder tragen die Augenzahlen 1,1,1,1,2,2,2,3 (Typ II). Sonst unterscheiden sich die Oktaeder nicht.

1. Diese fünf Oktaeder werden in eine Urne gelegt.
Das Zufallsexperiment besteht darin, zuerst ein Oktaeder aus der Urne zu ziehen, es anschließend zu werfen und die oben liegende Zahl x abzulesen.

a) Stellen Sie das Zufallsexperiment übersichtlich, z.B. mit Hilfe eines Baumdiagrammes dar. Bestätigen Sie, daß für die Wahrscheinlichkeit, die Augenzahl x zu erhalten, folgendes gilt:

x=1     P(x)= [mm] \frac{7}{20} [/mm]

x=2     P(x)= [mm] \frac{9}{20} [/mm]

x=3     P(x)= [mm] \frac{1}{5} [/mm]

b) Das Zufallsexperiment wird nun dreimal wiederholt (das gezogene Oktaeder wird also jedesmal in die Urne zurückgemischt). Berechnen Sie die Wahrscheinlichkeiten folgender Ereignisse:

[mm] E_1: [/mm] "Genau einmal tritt die Augenzahl 2 auf",
[mm] E_2: [/mm] "Mindestens zweimal tritt die Augenzahl 3 auf",
[mm] E_3: [/mm] "Die Augensumme beträgt mindestens 8".

c) Wie oft muß man das Zufallsexperiment (Ziehen eines Oktaeders aus der Urne, Werfen dieses Oktaeders) wiederholen, damit man mit einer Wahrscheinlichkeit von mehr als 99% mindestens einmal die Augenzahl 1 oder 3 erhält?

Ich habe mich recht lange mit der Aufgabe beschäftigt, habe aber keine Lösungen und wüsste gerne ob ich richtig gerechnet habe.

1a)

Typ I:   1       [mm] \frac{2}{8} [/mm] = [mm] \frac{1}{4} [/mm]     *  [mm] \frac{3}{5} [/mm]  = [mm] \frac{3}{20} [/mm]

         2       [mm] \frac{4}{8} [/mm] = [mm] \frac{1}{2} [/mm]     *  [mm] \frac{3}{5} [/mm]  = [mm] \frac{3}{10} [/mm]

         3       [mm] \frac{2}{8} [/mm] = [mm] \frac{1}{4} [/mm]     *  [mm] \frac{3}{5} [/mm]  = [mm] \frac{3}{20} [/mm]

Typ II:  1       [mm] \frac{4}{8} [/mm] = [mm] \frac{1}{2} [/mm]     *  [mm] \frac{2}{5} [/mm]  = [mm] \frac{2}{10}= \frac{1}{5} [/mm]

         2       [mm] \frac{3}{8} [/mm]    *  [mm] \frac{2}{5} [/mm]  = [mm] \frac{6}{40} [/mm] = [mm] \frac{3}{20} [/mm]

         3       [mm] \frac{1}{8} [/mm]     *  [mm] \frac{2}{5} [/mm]  = [mm] \frac{2}{40} [/mm] = [mm] \frac{1}{20} [/mm]

=> 1: [mm] \frac{3}{20} [/mm] + [mm] \frac{1}{5} [/mm] = [mm] \frac{3}{20} [/mm] +  [mm] \frac{4}{20} [/mm] =  [mm] \frac{7}{20} [/mm]

   2: [mm] \frac{3}{10}+ \frac{3}{20} [/mm] =  [mm] \frac{6}{20} [/mm] +  [mm] \frac{3}{20} [/mm] =  [mm] \frac{9}{20} [/mm]

   3:  [mm] \frac{3}{20} [/mm] +  [mm] \frac{1}{20} [/mm]  =  [mm] \frac{4}{20} [/mm] =  [mm] \frac{1}{5} [/mm]

b)

Treffer:= "2"; n= 3; p= [mm] \frac{9}{20} [/mm]
[mm] E_1: [/mm] P(Z=1)= {3 [mm] \choose [/mm] 1} [Binominalkoeffizient 1 aus 3, irgendwie klappt das mit der Darstellung nicht]  * [mm] \left( \bruch{9}{20} \right)^1 [/mm] * [mm] \left( \bruch{11}{20} \right)^2= [/mm] 3 * [mm] \bruch{9}{20} [/mm]  * [mm] \left( \bruch{11}{20} \right)^2 \approx [/mm]  40,8%

Treffer:= "3"; n=3; p= [mm] \frac{1}{5} [/mm]
[mm] E_2: [/mm] P(Z [mm] \ge [/mm] 2) = 1 - P(Z [mm] \le [/mm] 1) = 1-0,89600 [mm] \approx [/mm]  10,4%

Augensumme [mm] \ge [/mm] 8 => 233,323,332 und 333
[mm] E_3: \frac{9}{20} [/mm] * [mm] \frac{1}{5} [/mm] * [mm] \frac{1}{5} [/mm] * 3 + [mm] \frac{1}{5} [/mm] * [mm] \frac{1}{5} [/mm] * [mm] \frac{1}{5}= \frac{1}{125} [/mm] + [mm] \frac{9}{500} [/mm] * 3 = [mm] \frac{31}{500} \approx [/mm] 6,2%

c)
Augenzahl 1 oder 3: p= [mm] \frac{7}{20} [/mm] + [mm] \frac{1}{5} [/mm] = [mm] \frac{7}{20} [/mm] + [mm] \frac{4}{20} [/mm] = [mm] \frac{11}{20} [/mm]

P(Z [mm] \ge [/mm] 1) > 0,99
1 - P(Z=0) > 0,99
1-  [mm] \left( \bruch{9}{20} \right)^n [/mm] > 0,99
-  [mm] \left( \bruch{9}{20} \right)^n [/mm] > - 0,01
[mm] \left( \bruch{9}{20} \right)^n [/mm] < 0,01
n * ln [mm] \frac{9}{20} [/mm] < ln 0,01
n > [mm] \frac{ln 0,01}{ln \frac{9}{20}} [/mm]
n > 5,7
[mm] n_0 \ge [/mm] 6

=> Das Zufallsexperiment muss mindestens sechs Mal wiederholt

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Zufallsexperimente m. Oktaeder: Antwort
Status: (Antwort) fertig Status 
Datum: 14:09 Sa 14.04.2007
Autor: Kroni

Hi,

soweit ich die Aufgabe gerade überblickt habe, sehen deine Rechnungen korrekt aus.

Liebe Grüße,

Kroni

Bezug
                
Bezug
Zufallsexperimente m. Oktaeder: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:22 Sa 14.04.2007
Autor: xanaimb

Vielen Dank für die Hilfe!

Viele Grüße
Alexandra

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]