matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraZerlegung in Linearfaktoren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Zerlegung in Linearfaktoren
Zerlegung in Linearfaktoren < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zerlegung in Linearfaktoren: Wann geht das nicht?
Status: (Frage) beantwortet Status 
Datum: 18:45 Do 17.04.2008
Autor: schlumpfinchen123

Aufgabe
Geben Sie ein Beispiel für eine Matrix A [mm] \in M_{22}(\IR), [/mm] deren charakteristisches Polynom nicht in Linearfaktoren zerfällt.

Hallo,

es wäre nett, wenn mir jemand weiterhelfen könnte. Meine Frage wäre jetzt folgende: Wann zerfällt ganz allgemein ein  Polynom nicht in Linearfaktoren?!
Kann man generell sagen, dass wenn das Polynom im entsprechenden Körper keine einzige Nullstelle hat, es nicht in Linearfaktoren zerfällt.
Und wenn das so richtig sein sollte, gibt es auch Polynome mit Nullstellen, die aber trotzdem nicht in Linearfaktoren zerfallen?

Vielen Dank schon mal für die Hilfe!

        
Bezug
Zerlegung in Linearfaktoren: Antwort
Status: (Antwort) fertig Status 
Datum: 01:37 Fr 18.04.2008
Autor: MatthiasKr

Hi,
> Geben Sie ein Beispiel für eine Matrix A [mm]\in M_{22}(\IR),[/mm]
> deren charakteristisches Polynom nicht in Linearfaktoren
> zerfällt.
>  Hallo,
>
> es wäre nett, wenn mir jemand weiterhelfen könnte. Meine
> Frage wäre jetzt folgende: Wann zerfällt ganz allgemein ein
>  Polynom nicht in Linearfaktoren?!
> Kann man generell sagen, dass wenn das Polynom im
> entsprechenden Körper keine einzige Nullstelle hat, es
> nicht in Linearfaktoren zerfällt.
>  Und wenn das so richtig sein sollte, gibt es auch Polynome
> mit Nullstellen, die aber trotzdem nicht in Linearfaktoren
> zerfallen?
>  

naja, bleiben wir erstmal bei den 2x2-matrizen ueber R. das charakteristische polynom hat dann die ordnung 2. Sobald es eine nullstelle  [mm] $\lambda_0$ [/mm] hat, kann man diese natuerlich herausdividieren (durch [mm] $(\lambda-\lambda_0)$ [/mm] teilen) und findet damit den zweiten linearfaktor. es gilt also in diesem fall: das char. polyn. hat eine NS gdw. es in linearfaktoren zerfaellt. Fuer groessere matrizen sieht das dann schon ein wenig anders aus.

fuer reelle 2x2 matrizen ist es aber so, dass wenn das char. polynom nicht in LFen zerfaellt, es folglich keine (reellen) Eigenwerte gibt. Ein beispiel dafuer sind zb. die drehungen, also zb die matrix

M= [mm] \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} [/mm]

rechne das mal nach!

gruss
matthias

> Vielen Dank schon mal für die Hilfe!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]